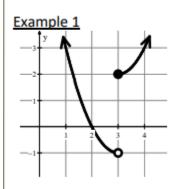
What is a one-sided limit?

A *one-sided limit* is the _____ a function approaches as you approach a given from either the ____ or __ side.



The limit of f as x approaches 3 from the left side is -1.

$$\lim_{x\to} f(x) =$$

The limit of f as x approaches 3 from the right side is 2.

$$\lim_{x\to} f(x) =$$

If the two sides are different?

$$\lim_{x\to}f(x)=$$

Example 2

a.
$$\lim_{x \to -2^{-}} f(x) =$$
 b.

b.
$$\lim_{x \to -2^+} f(x) =$$

c.
$$\lim_{x \to -2} f(x) =$$

$$\mathrm{d.}\lim_{x\to 1}f(x)=$$

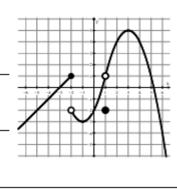
e.
$$\lim_{x\to 0} f(x) =$$

$$f. \lim_{x \to 3^{-}} f(x) =$$

g.
$$\lim_{x \to -1} f(x) =$$

h.
$$f(1) =$$

i.
$$f(-2) =$$



Example 3

Sketch a graph of a function g that satisfies all of the following conditions.

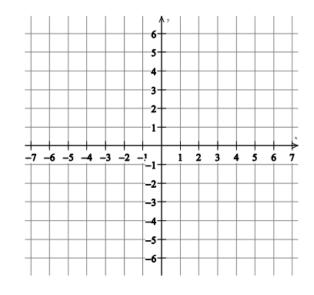
a.
$$g(3) = -1$$

$$b. \quad \lim_{x \to 3} g(x) = 4$$

$$c. \quad \lim_{x \to -2^+} g(x) = 1$$

d.
$$g$$
 is increasing on $-2 < x < 3$

e.
$$\lim_{x \to -2^{-}} g(x) > \lim_{x \to -2^{+}} g(x)$$

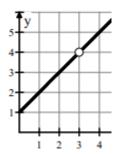


Finding Limits from tables:

If we have the graph, it is easy to see the value of $\lim_{x\to 3} f(x) =$

Without the graph, we could use a table of values.

x	2.9	2.99	3.01	3.1
f(x)	3.9	3.99	4.01	4.1



The function f is continuous and increasing for $x \ge 1$. The table gives values of f at selected values of x. Approximate the value of $\lim_{x\to 2} \cos(f(x))$.

x	1.99	1.999	2.001	2.01
f(x)	4.85	4.999	5.001	5.15

$$\lim_{x\to 2}\cos\bigl(f(x)\bigr)=$$

Finding Limits Using Algebraic Methods:

Direct Substitu	ıtion	Factor and Cancel		
1. $\lim_{x \to -1} (x^2 + 2x - 4)$	$2. \lim_{x\to 2} 6$	$3. \lim_{x \to 0} \frac{4x^2 - 5x}{x}$	4. $\lim_{x \to -7} \frac{2x^2 + 13x - 7}{x + 7}$	

Limit Does Not Exist

5.
$$\lim_{x \to -6} \frac{x^2 + 4x + 3}{x + 6}$$

Rationalize Fractions with Radicals

1.
$$\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$$

2.
$$\lim_{x \to 10} \frac{x - 10}{3 - \sqrt{x - 1}}$$

Complex Fractions

3.
$$\lim_{x \to 0} \frac{x}{\frac{1}{x-4} + \frac{1}{4}}$$

4.
$$\lim_{x \to 0} \frac{\frac{1}{(x+3)^2} - \frac{1}{9}}{x}$$

10.
$$\lim_{x \to 1} \frac{\frac{1}{3} - \frac{1}{3x}}{x - 1}$$

11.
$$\lim_{x \to 0} \frac{\sqrt{x+11} - \sqrt{11}}{x}$$

12.
$$\lim_{x \to 3} \frac{\sqrt{2x-6}}{x}$$

13.
$$\lim_{x \to 0} \frac{\frac{1}{(x+2)^2} - \frac{1}{4}}{x}$$

14.
$$\lim_{x \to b} \frac{b - x}{\sqrt{x} - \sqrt{b}}$$
 is

(A) $-2\sqrt{b}$ (B) $-\sqrt{b}$ (C) 2b (D) \sqrt{b} (E) $2\sqrt{b}$

Use the piecewise functions to find the given values.

15)

$$g(x) = \begin{cases} \sqrt{5-x}, & x < -4 \\ x^2 - 5, & -4 \le x < 2 \\ x - 3, & x \ge 2 \end{cases}$$

a.
$$\lim_{x\to 2^-} g(x) =$$
 b. $\lim_{x\to -4^+} g(x) =$

c. g(2) =

d.
$$\lim_{x \to -4^{-}} g(x) =$$

e. $\lim_{x\to 2^+} g(x) =$ f. $\lim_{x\to 2} g(x) =$

f.
$$\lim_{x \to 2} g(x) =$$

g. $\lim_{x \to -4} g(x) =$ h. g(-4) =

h.
$$g(-4) =$$

16) Limits of absolute value functions

$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2}$$