1.2 **Exercises**

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Estimating a Limit Numerically In Exercises 1-6, complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.

1.
$$\lim_{x \to 4} \frac{x-4}{x^2-3x-4}$$

x	3.9	3.99	3.999	4	4.001	4.01	4.1
f(x)				?			

2.
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

e

тe

 $\cdot \delta$

x ·	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)	,			?			

3.
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)				?			

4.
$$\lim_{x \to 3} \frac{[1/(x+1)] - (1/4)}{x-3}$$

Х	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)				?			

$$5. \lim_{x \to 0} \frac{\sin x}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)				?			

$$6. \lim_{x \to 0} \frac{\cos x - 1}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)				?			

Estimating a Limit Numerically In Exercises 7-14, create a table of values for the function and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.

$$\sqrt[7]{0} \lim_{x \to 1} \frac{x-2}{x^2+x-6}$$

8.
$$\lim_{x \to -4} \frac{x+4}{x^2+9x+20}$$

9).
$$\lim_{x \to 1} \frac{x^4 - 1}{x^6 - 1}$$

10.
$$\lim_{x\to -3} \frac{x^3+27}{x+3}$$

11.
$$\lim_{x \to -6} \frac{\sqrt{10-x}-4}{x+6}$$

11.
$$\lim_{x \to -6} \frac{\sqrt{10-x}-4}{x+6}$$
 12. $\lim_{x \to 2} \frac{[x/(x+1)]-(2/3)}{x-2}$

$$13. \lim_{x\to 0} \frac{\sin 2x}{x}$$

14.
$$\lim_{x \to 0} \frac{\tan x}{\tan 2x}$$

Finding a Limit Graphically In Exercises 15-22, use the graph to find the limit (if it exists). If the limit does not exist, explain why.

15.
$$\lim_{x\to 3} (4-x)$$

16.
$$\lim_{x\to 0} \sec x$$

17.
$$\lim_{x \to 2} f(x)$$

$$f(x) = \begin{cases} 4 - x, & x \neq 2 \\ 0, & x = 2 \end{cases}$$

18.
$$\lim_{x \to 1} f(x)$$

$$\lim_{x \to 2} f(x)$$

$$f(x) = \begin{cases} 4 - x, & x \neq 2 \\ 0, & x = 2 \end{cases}$$
18.
$$\lim_{x \to 1} f(x)$$

$$f(x) = \begin{cases} x^2 + 3, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

19.
$$\lim_{x\to 2} \frac{|x-2|}{x-2}$$

20.
$$\lim_{x \to 5} \frac{2}{x - 5}$$

21.
$$\lim_{x\to 0} \cos \frac{1}{x}$$

22.
$$\lim_{x\to\pi/2} \tan x$$

Graphical Reasoning In Exercises 23 and 24, use the graph of the function f to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.

56

(b)
$$\lim_{x \to 1} f(x)$$

(c)
$$f(4)$$

(d)
$$\lim_{x \to 4} f(x)$$

24. (a) f(-2)

(b)
$$\lim_{x \to -2} f(x)$$

(c)
$$f(0)$$

(d)
$$\lim_{x \to a} f(x)$$

(e)
$$f(2)$$

(f)
$$\lim_{x\to 2} f(x)$$

(g)
$$f(4)$$

(h)
$$\lim_{x \to 4} f(x)$$

Limits of a Piecewise Function In Exercises 25 and 26, sketch the graph of f. Then identify the values of c for which $\lim f(x)$ exists.

25.
$$f(x) = \begin{cases} x^2, & x \le 2 \\ 8 - 2x, & 2 < x < 4 \\ 4, & x \ge 4 \end{cases}$$

26.
$$f(x) = \begin{cases} \sin x, & x < 0 \\ 1 - \cos x, & 0 \le x \le \pi \\ \cos x, & x > \pi \end{cases}$$

Sketching a Graph In Exercises 27 and 28, sketch a graph of a function f that satisfies the given values. (There are many correct answers.)

27.
$$f(0)$$
 is undefined.

28.
$$f(-2) = 0$$

$$\lim_{x\to 0} f(x) = 4$$

$$f(2) = 0$$

$$f(2) = 6$$

$$\lim_{x \to -2} f(x) = 0$$

$$\lim_{x\to 2} f(x) = 3$$

$$\lim_{x\to 2} f(x)$$
 does not exist.

29. Finding a \delta for a Given ε The graph of f(x) = x + 1 is shown in the figure. Find δ such that if $0 < |x - 2| < \delta$, then |f(x) - 3| < 0.4.

30. Finding a δ for a Given ε The graph of

$$f(x) = \frac{1}{x-1}$$

is shown in the figure. Find δ such that if $0 < |x - 2| < \delta$, then |f(x) - 1| < 0.01.

31. Finding a δ for a Given ε The graph of

$$f(x) = 2 - \frac{1}{x}$$

is shown in the figure. Find δ such that if $0 < |x - 1| < \delta$, then |f(x) - 1| < 0.1.

Figure for 31

Figure for 32

32. Finding a δ for a Given ε The graph of

$$f(x) = x^2 - 1$$

is shown in the figure. Find δ such that if $0 < |x - 2| < \delta$, then |f(x) - 3| < 0.2.

Finding a δ for a Given ε In Exercises 33-36, find the limit L. Then find $\delta > 0$ such that |f(x) - L| < 0.01whenever $0 < |x - c| < \delta$.

33.
$$\lim_{x\to 2} (3x + 2)$$

33.
$$\lim_{x\to 2} (3x + 2)$$
 34. $\lim_{x\to 6} \left(6 - \frac{x}{3}\right)$ **35.** $\lim_{x\to 2} (x^2 - 3)$ **36.** $\lim_{x\to 4} (x^2 + 6)$

35.
$$\lim_{x \to 2} (x^2 - 3)$$

36.
$$\lim_{x \to 4} (x^2 + 6)$$

Using the ε - δ Definition of Limit In Exercises 37–48, find the limit L. Then use the ε - δ definition to prove that the limit is L.

37.
$$\lim_{x\to 4} (x+2)$$

38.
$$\lim_{x \to -2} (4x + 5)$$

39.
$$\lim_{x \to -4} \left(\frac{1}{2}x - 1 \right)$$

40.
$$\lim_{x\to 3} \left(\frac{3}{4}x + 1\right)$$

41.
$$\lim_{x\to 6} 3$$

42.
$$\lim_{x\to 2} (-1)$$

43.
$$\lim_{x \to 0} \sqrt[3]{x}$$

44.
$$\lim_{x \to 4} \sqrt{x}$$

45.
$$\lim_{x \to 0} |x - 5|$$

46.
$$\lim_{x \to 2} |x - 3|$$

47.
$$\lim_{x \to 0} (x^2 + 1)$$

43.
$$\lim_{x\to 0} \sqrt[3]{x}$$
44. $\lim_{x\to 4} \sqrt{x}$
45. $\lim_{x\to -5} |x-5|$
46. $\lim_{x\to 3} |x-3|$
47. $\lim_{x\to 1} (x^2+1)$
48. $\lim_{x\to -4} (x^2+4x)$

50. Finding a Limit What is the limit of g(x) = x as x approaches π ?

Writing In Exercises 51-54, use a graphing utility to graph the function and estimate the limit (if it exists). What is the domain of the function? Can you detect a possible error in determining the domain of a function solely by analyzing the graph generated by a graphing utility? Write a short paragraph about the importance of examining a function analytically as well as graphically.

51.
$$f(x) = \frac{\sqrt{x+5}-3}{x-4}$$
 52. $f(x) = \frac{x-3}{x^2-4x+3}$

52.
$$f(x) = \frac{x-3}{x^2-4x+3}$$

$$\lim_{x\to 4} f(x)$$

$$\lim_{x \to 3} f(x)$$

53.
$$f(x) = \frac{x-9}{\sqrt{x}-3}$$

$$\lim_{x\to 9} f(x)$$

54.
$$f(x) = \frac{x-3}{x^2-9}$$

$$\lim_{x\to 3} f(x)$$

55. Modeling Data For a long distance phone call, a hotel charges \$9.99 for the first minute and \$0.79 for each additional minute or fraction thereof. A formula for the cost is given by

$$C(t) = 9.99 - 0.79[-(t-1)]$$

where t is the time in minutes.

(*Note:* ||x|| = greatest integer n such that $n \le x$. For example, [3.2] = 3 and [-1.6] = -2.

- (a) Use a graphing utility to graph the cost function for 0 < t < 6.
- (b) Use the graph to complete the table and observe the behavior of the function as t approaches 3.5. Use the graph and the table to find $\lim_{t\to 3.5} C(t)$.

t	3	3.3	3.4	3.5	3.6	3.7	4
C				?			

(c) Use the graph to complete the table and observe the behavior of the function as t approaches 3.

t 2	2.5	2.9	3	3.1	3.5	4
C			?			

Does the limit of C(t) as t approaches 3 exist? Explain.

56. Repeat Exercise 55 for

$$C(t) = 5.79 - 0.99 [-(t-1)]$$

WRITING ABOUT CONCEPTS

57. Describing Notation Write a brief description of the meaning of the notation

57

$$\lim_{x \to 8} f(x) = 25.$$

- 58. Using the Definition of Limit The definition of limit on page 52 requires that f is a function defined on an open interval containing c, except possibly at c. Why is this requirement necessary?
- 59. Limits That Fail to Exist Identify three types of behavior associated with the nonexistence of a limit. Illustrate each type with a graph of a function.
- 60. Comparing Functions and Limits
 - (a) If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2? Explain your reasoning.
 - (b) If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain your reasoning.
- 61. Jewelry A jeweler resizes a ring so that its inner circumference is 6 centimeters.
 - (a) What is the radius of the ring?
 - (b) The inner circumference of the ring varies between 5.5 centimeters and 6.5 centimeters. How does the radius vary?
 - (c) Use the ε - δ definition of limit to describe this situation. Identify ε and δ .

62. Sports • • • • • • • •

A sporting goods manufacturer designs a golf ball having a volume of 2.48 cubic inches.

- (a) What is the radius of the golf ball?
- (b) The volume of the golf ball varies between 2.45 cubic inches and 2.51 cubic inches. How does the radius vary?

- (c) Use the ε - δ definition of limit to describe this situation. Identify ε and δ .
- 63. Estimating a Limit Consider the function

$$f(x) = (1 + x)^{1/x}.$$

Estimate

$$\lim_{x \to 0} (1 + x)^{1/x}$$

by evaluating f at x-values near 0. Sketch the graph of f.

The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate technology.

64. Estimating a Limit Consider the function

$$f(x) = \frac{|x+1| - |x-1|}{x}.$$

Estimate

$$\lim_{x \to 0} \frac{|x+1| - |x-1|}{x}$$

by evaluating f at x-values near 0. Sketch the graph of f.

65. Graphical Analysis The statement

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

means that for each $\varepsilon > 0$ there corresponds a $\delta > 0$ such that if $0 < |x-2| < \delta$, then

$$\left|\frac{x^2-4}{x-2}-4\right|<\varepsilon.$$

If $\varepsilon = 0.001$, then

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| < 0.001.$$

Use a graphing utility to graph each side of this inequality. Use the zoom feature to find an interval $(2 - \delta, 2 + \delta)$ such that the graph of the left side is below the graph of the right side of the inequality.

HOW DO YOU SEE IT? Use the graph of f to identify the values of c for which $\lim_{x \to a} f(x)$ exists.

True or False? In Exercises 67–70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.

- **67.** If f is undefined at x = c, then the limit of f(x) as x approaches c does not exist.
- **68.** If the limit of f(x) as x approaches c is 0, then there must exist a number k such that f(k) < 0.001.
- **69.** If f(c) = L, then $\lim_{x \to c} f(x) = L$.
- **70.** If $\lim_{x \to c} f(x) = L$, then f(c) = L.

Determining a Limit In Exercises 71 and 72, consider the function $f(x) = \sqrt{x}$.

71. Is
$$\lim_{x\to 0.25} \sqrt{x} = 0.5$$
 a true statement? Explain.

72. Is
$$\lim_{x\to 0} \sqrt{x} = 0$$
 a true statement? Explain.

73. Evaluating Limits Use a graphing utility to evaluate

$$\lim_{x \to 0} \frac{\sin nx}{x}$$

for several values of n. What do you notice?

74. Evaluating Limits Use a graphing utility to evaluate

$$\lim_{x \to 0} \frac{\tan nx}{x}$$

for several values of n. What do you notice?

- **75. Proof** Prove that if the limit of f(x) as x approaches c exists, then the limit must be unique. [Hint: Let $\lim f(x) = L_1$ and $\lim f(x) = L_2$ and prove that $L_1 = L_2$.
- **76.** Proof Consider the line f(x) = mx + b, where $m \neq 0$. Use the ε - δ definition of limit to prove that $\lim f(x) = mc + b$.
- 77. **Proof** Prove that

$$\lim_{x\to c} f(x) = L$$

is equivalent to

$$\lim_{x \to c} \left[f(x) - L \right] = 0.$$

78. Proof

(a) Given that

$$\lim_{x \to 0} (3x + 1)(3x - 1)x^2 + 0.01 = 0.01$$

prove that there exists an open interval (a, b) containing 0 such that $(3x + 1)(3x - 1)x^2 + 0.01 > 0$ for all $x \neq 0$ in

(b) Given that $\lim g(x) = L$, where L > 0, prove that there exists an open interval (a, b) containing c such that g(x) > 0for all $x \neq c$ in (a, b).

PUTNAM EXAM CHALLENGE

79. Inscribe a rectangle of base b and height h in a circle of radius one, and inscribe an isosceles triangle in a region of the circle cut off by one base of the rectangle (with that side as the base of the triangle). For what value of h do the rectangle and triangle have the same area?

80. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.