Rules:

1) $\lim _{x \rightarrow c} b=b$
2) Suppose $\lim _{x \rightarrow c} f(x)=L \quad$ then $\quad \lim _{x \rightarrow c} \boldsymbol{b} f(x)=\boldsymbol{b} L$
I. Direct Substitution Method: To find limits for a function, first try to evaluate the argument in the expression (plug in the value). If the resulting value is a Real Number, then the value is the limit (answer).

Example 1:

a) $\lim _{x \rightarrow 2} x^{2}+3 x=$
c) $\lim _{x \rightarrow-1} 3 x^{5}-2 x^{2}+7 x+4=$
d) $\lim _{x \rightarrow \pi} x \cos x=$
II. Simplify/Reduction Method (Factor/Simplify/Substitute) Steps:

1) Evaluate argument First! (plug in value into expression)
2) If direct substitution produces $\frac{\mathbf{0}}{\mathbf{0}}$ (indeterminate form), we need to evaluate further
*Note: $\frac{\mathbf{0}}{\mathbf{0}}$ does not mean the Limit is Undefined. $\frac{\mathbf{0}}{\mathbf{0}}$ just means our problem is incomplete and unfinished. (It's true that the function value is undefined because there's a hole in the graph, but the limit most times does still exist)
3) Factor/Reduce/Simplify: Try finding common factors in order to reduce expression
4) Using the Reduced expression, re-evaluate the limit
5) Confirm resulting value is now a Real Number, therefore the limit (answer)

Example 2:

a) $\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x+2}=$
b) $\lim _{x \rightarrow 1} \frac{x^{2}+5 x+6}{x-1}=$

Evaluate argument First! (plug in value into expression)
2) If direct substitution produces $\frac{\mathbf{0}}{\mathbf{0}}$ (indeterminate form), we need to evaluate further
3) Factor/Reduce/Simplify: Try finding common factors in order to reduce expression
4) Using the Reduced expression, re-evaluate the limit
5) Confirm resulting value is now a Real Number, therefore the limit (answer)

Example 2 (continued):

c) $\lim _{x \rightarrow 2} \frac{x^{2}+5 x+6}{x+2}=$
d) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}=$

Practice Problems:

1) $\lim _{x \rightarrow 1} \frac{2 x^{2}-x-3}{x-1}$
2) $\lim _{x \rightarrow 3} \frac{4 x^{2}-7 x-2}{x-2}$
3)

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

4) $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-3 x+2}$
5)

$$
\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}-9}
$$

6)

$\lim _{x \rightarrow 5} \frac{5-x}{x^{2}-25}$

