
Intermediate Value Theorem (for continuous functions) - IVT

Justification with the IVT.

- The function f(x) is continuous on an interval [].
- 2. f() < f() or f() > f().
- 3. f() is between f() and f().

Conclusion: "According to the IVT, there is a value such that $f() = \underline{\hspace{1cm}}$ and $\leq \leq .$ "

Below is a table of values for a continuous function f.

below is a table of values for a continuous function j.					
x	0	3	4	8	9
f(x)	1	-5	3	7	-1

- 1. On the interval $0 \le x \le 9$ what is the minimum number of zeros?
- 2. On the interval $4 \le x \le 9$, what is the fewest possible times f(x) = 1?
- 3. On the interval $0 \le x \le 4$, must there be a value of x for which f(x) = 2? Explain.
- 4. On the interval $4 \le x \le 8$, *could* there be a value of x for which f(x) = -2? Explain.
- 5. Will the function $f(x) = x^2 x + 1$ ever equal 8 on the interval [-1, 5]? Explain.

Use the Intermediate Value Theorem to answer each problem.

- 16. If $f(x) = 3 x^2$, will f(x) = 0 on the interval [-2, 1]? Explain.
- 17. If $g(x) = \frac{1}{x}$, will g(x) = -1 on the interval [2, 5]? Explain.

1.4 - Squeeze Theorem

Squeeze Theorem: a.k.a. "Sandwich Theorem" or "Pinching Theorem"

If
$$(x) \le (x) \le (x)$$

and if $\lim g(x) = \text{ and } \lim h(x) =$

then $\lim f(x) =$

1. Find
$$\lim_{x\to 0} x^2 \cos\left(\frac{1}{x^2}\right)$$

- 2. Let g and h be the functions defined by $g(x) = -x^2 + 2x 3$ and h(x) = 2x + 1. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to 2} f(x)$?
- 3. Let g and h be the functions defined by $g(x) = \cos\left(\frac{\pi}{2}x\right) + 2$ and $h(x) = x^2 + 3$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for $-1 \le x \le 5$, what is $\lim_{x \to 0} f(x)$?

- 4. Let g and h be the functions defined by $g(x) = x^2 3x$ and h(x) = 2 2x. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to 2} f(x)$?
- 5. Let g and h be the functions defined by $g(x) = \cos(\pi(x+2)) 3$ and $h(x) = \frac{x^2}{2} + x \frac{7}{2}$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for $-2 \le x \le 0$, what is $\lim_{x \to -1} f(x)$?