Calculus

Ch. 1.4a Notes

Continuity and One-Sided Limits
Definition: One-Sided Limits - describes the function's behavior from the left or the right side of an x-value

Example 1:

$f(x)=\left\{\begin{array}{lll}x^{2} & , & x \geq 1 \\ x+3 & , & x<1\end{array}\right.$

c) right handed limit: $\lim _{x \rightarrow 1^{+}} f(x)=$

In other words: "The Limit (y-value that the graph approaches) from the right side of $x=1$ is \qquad
In other words: "The Limit (y-value that the graph approaches) from the left side of $x=1$ is \qquad

- Recall that the limit of $f(x)$ as $x \rightarrow c$ exists only if $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)$.

Continuity

can I walk along the graph without any interruptions? Can I draw the graph without ever lifting my pen/pencil? If so, the path or graph is continuous at that point.

Continuity Conditions: (*IMPORTANT: KNOW THIS*)

For a function, f, to be continuous at c, the following 3 conditions must be met.

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ exists $\quad\left(\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)\right)$
3. $\lim _{x \rightarrow c} f(x)=f(c)$
*point exists
*the limit exists

* the limit exists at same location as point
- When checking for discontinuity, step through each of the conditions above in order.

Types of Continuity:

1) Removable Discontinuity (hole in graph) - a graph with removable discontinuity can be made continuous by filling in a single point.

2) Nonremovable Discontinuity (step, jump discontinuity) - this is a discontinuity where the graph jumps from one connected piece of graph to another.

Continuity Conditions revisited

i. $f(c)$ is defined	*If first condition fails, function is not continuous at the point, but continue to test next condition(s) to categorize removable/nonremovable
ii. $\lim _{x \rightarrow c} f(x)$ exists $\left(\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)\right)$	*If 2 $2^{\text {nd }}$ condition fails, then the limit does not exist, and this function must have non-removable discontinuity at that point *Test $3^{\text {rd }}$ condition only if $2^{\text {nd }}$ condition passes.
iii. $\lim _{x \rightarrow c} f(x)=f(c)$	*If 2 $2^{\text {nd }}$ condition passes, but $3^{\text {rd }}$ condition fails, then this function must have removable discontinuity at that point *If all 3 condition passes, then the function is continuous at that point.

_Class Example 2: Using continuity conditions, determine the reason why the following graphs are discontinuous. Then categorize as removable or nonremovable discontinuity

c)

d) Find the point (x-value) of discontinuity for the function $f(x)=\frac{x^{2}-9}{x-3}$. Is it removable? If so, what would we need to set $f(x)$ equal to at that value for the function to be continuous? (Step through continuity conditions to support your answer)

