Definition: One-Sided Limits – describes the function's behavior from the left or the right side of an x-value Example 1:

$$f(x) = \begin{cases} x^2 & , & x \ge 1 \\ x+3 & , & x < 1 \end{cases}$$

 $\lim_{x \to 1} f(x) =$ a)

b) left handed limit: $\lim_{x \to 1^-} f(x) =$

In other words: "The Limit (y-value that the graph approaches) from the left side of x = 1 is _____

c) right handed limit: $\lim_{x \to 1^+} f(x) =$

In other words: "The Limit (y-value that the graph approaches) from the right side of x = 1 is _____

Recall that the limit of f(x) as $x \to c$ exists only if $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)$.

Continuity

can I walk along the graph without any interruptions? Can I draw the graph without ever lifting my pen/pencil? If so, the path or graph is continuous at that point.

Continuity Conditions: (*IMPORTANT: KNOW THIS*)

For a function, *f*, to be continuous at *c*, the following 3 conditions must be met.

- *point exists 1. f(c) is defined 2. $\lim_{x \to c} f(x)$ exists $(\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x))$ *the limit exists 3. $\lim_{x \to c} f(x) = f(c)$ * the limit exists at same location as point
- When checking for discontinuity, step through each of the conditions above in order.

Types of Continuity:

1) **Removable Discontinuity** (hole in graph) – a graph with removable discontinuity can be made continuous by filling in a single point.

2) Nonremovable Discontinuity (step, jump discontinuity) – this is a discontinuity where the graph jumps from one connected piece of graph to another.

*Non-removable discontinuity fails the 2nd continuity condition:

 $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) =$

) = then
$$\lim_{x \to -1} f(x) =$$

Continuity Conditions revisited

i. f(c)is defined	*If first condition fails, function is not continuous at the point, but continue to test next condition(s) to categorize removable/nonremovable
<i>ii.</i> $\lim_{x \to c} f(x)$ exists $(\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x))$	*If 2 nd condition fails, then the limit does not exist, and this function must have non-removable discontinuity at that point *Test 3 rd condition <u>only</u> if 2 nd condition passes.
$iii. \lim_{x \to c} f(x) = f(c)$	*If 2 nd condition passes, but 3 rd condition fails, then this function must have removable discontinuity at that point *If all 3 condition passes, then the function is continuous at that point.

Class Example 2: Using continuity conditions, determine the reason why the following graphs are discontinuous. Then categorize as removable or nonremovable discontinuity

d) Find the point (x-value) of discontinuity for the function $f(x) = \frac{x^2 - 9}{x - 3}$. Is it removable? If so, what would we need to set f(x) equal to at that value for the function to be continuous? (Step through continuity conditions to support your answer)