Review continuity conditions:

i) $f(c)$ is defined
ii) $\lim _{x \rightarrow c} f(x)$ exists $\left(\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)\right)$
iii) $\lim _{x \rightarrow c} f(x)=f(c)$

Warm-up problem: Prove that the following is discontinuous at $x=2$. Is it removable? If so, redefine $f(2)$ to make the function continuous. (step through continuity conditions)
$f(x)=\left\{\begin{array}{lc}\frac{x^{2}-4}{x-2}, & x \neq 2 \\ x+5, & x=2\end{array}\right.$

Continuity on a closed interval: If a function is continuous on an open interval (a,b) and $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$, then the function is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$.

Intermediate Value Theorem: If f is continuous on a closed interval [$a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$.

*In other words, if a function is continuous, then the graph has to touch all the y-values between the 2 endpoints (at least once)

Example 1: Use the IVT to show that there is a zero in the interval $[0,1]$ for the function $f(x)=x^{3}+2 x-1$.

Example 2: Verify the IVT applies to $f(x)=\frac{x^{2}+x}{x-1}$ on the interval $\left[\frac{5}{2}, 4\right]$ for $\mathrm{f}(\mathrm{c})=6$ and find c .

Additional Continuity Practice Problems:

Making a Function Continuous In Exercises 61-66, find the constant a, or the constants a and b, such that the function is continuous on the entire real number line.
61. $f(x)= \begin{cases}3 x^{2}, & x \geq 1 \\ a x-4, & x<1\end{cases}$

Continuity conditions:

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ exists $\quad\left(\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)\right)$
3. $\lim _{x \rightarrow c} f(x)=f(c)$
4. $g(x)= \begin{cases}\frac{x^{2}-a^{2}}{x-a}, & x \neq a \\ 8, & x=a\end{cases}$
