I. Infinite Limits and Vertical Asymptotes

Use the function $f(x)=\frac{x^{2}+2 x-8}{x^{2}+x-12}$ to answer the following.

1. Identify all vertical asymptotes.

2. Evaluate $\lim _{x \rightarrow 3^{+}} f(x)$

Find the limit.
4. $\lim _{x \rightarrow 3^{+}} \frac{1-x}{x-3}$
5. $\lim _{x \rightarrow 1} \frac{x-3}{x^{2}-2 x+1}$

Practice Problems:

Identify the vertical asymptotes of each function.

1. $f(x)=\frac{x-6}{x^{2}-9 x+18}$	2. $f(x)=\frac{2 x^{2}-x-3}{3 x^{2}+4 x+1}$	3. $f(x)=\frac{x^{2}-x-12}{x+7}$
4. $f(x)=\frac{3 x^{2}-11 x+10}{x-2}$	$5 . f(x)=\frac{x^{3}+2 x^{2}-24 x}{x^{2}-x}$	$6 . f(x)=\frac{7 x^{2}+4 x-3}{7 x-3}$

II. Limits at Infinity and Horizontal Asymptotes

Horizontal Asymptotes: (End-behavior)
What does the y-value approach as the x-value approaches negative infinity AND positive infinity? Does it approach a specific number, or is it growing without bound?

Checking for Horizontal Asymptotes (H.A.) $\left(\lim _{x \rightarrow \infty} f(x)\right.$ or $\left.\lim _{x \rightarrow-\infty} f(x)\right)$
If $f(x)=\frac{p(x)}{q(x)}$, then compare the degrees between numerator and denominator
i) If Numerator degree < Denominator degree, then the H.A. is $y=0$

Example 1: $\lim _{x \rightarrow \infty} \frac{3 x^{2}-7}{2 x^{3}+1}=$
ii) If Denominator degree $=$ Numerator degree, then H.A. is $y=\frac{\text { numerator coefficient }}{\text { denominator coefficient }}$

Example 2: $\lim _{x \rightarrow \infty} \frac{5 x^{2}+3}{2 x^{2}+4 x-9}=$
iii) If Numerator degree > Denominator degree, then H.A. does not exist (limit is therefore $+\infty$ or $-\infty$)
Example 3: $\lim _{x \rightarrow \infty} \frac{2 x^{3}+1}{7 x^{2}+5 x+10}=$

Note: a H.A. is a description of end behavior, not a boundary that the graph can't cross. A function can NEVER cross a vertical asymptote, but it might cross a horizontal asymptote.

Use Horizontal Asymptote Rules for the following:
4) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{2 x-5}$
5) $\lim _{x \rightarrow-\infty} \frac{3 x^{2}+1}{2 x-5}$
6) $\lim _{x \rightarrow-\infty} \frac{3 x+1}{5-2 x}$
7) $\lim _{x \rightarrow \infty} \frac{3 x+1}{5-2 x}$
8) $\lim _{x \rightarrow \infty} \frac{3 x+1}{2 x^{2}-5}$
9) $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+1}{2 x^{2}-5}$
B. Finding Horizontal Asymptotes with Radicals in denominator

Ex. 10: Find the Horizontal asymptotes for:
$y=\frac{3 x-2}{\sqrt{4 x^{2}+5}}$

C. Comparative Growth Rates
*Families of Functions grow at predictable rates in relations to each other as x approaches $+\infty$
*Logarithms < Radicals < Polynomial (Algebraic) < Exponential
(slowest)
(fastest)

*Note: Comparative Growth Rates relationship only apply when limit approaches infinity. (NOT $-\infty$)
Ex. $11 \lim _{x \rightarrow \infty} \frac{\sqrt{5000 x+1000}}{x^{2}}$

Ex. $13 \lim _{x \rightarrow \infty} \frac{\ln (40000000 x)}{2 x}$

Ex. $12 \lim _{x \rightarrow \infty} \frac{-e^{2 x}}{1000 x^{4}+x^{5}}$
Ex. $14 \lim _{x \rightarrow \infty} \frac{-\sqrt{3000 x-4}}{\ln (5 x+1)}$
5. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}+6 x+8}{x+2}$ when $x \neq-2$, then $f(-2)=$
6. Let f be the function defined by $f(x)=\left\{\begin{array}{cl}\frac{x^{2}+8 x+12}{x+6}, & x \neq-6 \\ b, & x=-6\end{array}\right.$. For what value of b is f continuous at $x=-6$?

Evaluate the limit.

7. $\lim _{x \rightarrow \infty} \sin \left(\frac{x+3 \pi x^{2}}{2 x^{2}}\right)$
)
8. $\lim _{x \rightarrow-5^{-}} \frac{-3}{25-x^{2}}$
9. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
10. $\lim _{x \rightarrow \infty} \frac{4 x^{5}-2 x^{2}+3}{3 x^{2}+2 x^{5}-x^{4}}$
11. $\lim _{x \rightarrow-1} \frac{x^{2}+1}{x+1}$
12. $\lim _{x \rightarrow \infty} x^{5} 3^{-x}$
13. Identify all horizontal asymptotes of $f(x)=\frac{\sqrt{16^{6}+x^{3}+5 x}}{5 x^{3}-8 x}$.
