Calculus Ch. 1.5 Notes: Limits Approaching Infinity (Vertical Asymptotes)

Infinite Limits: a limit where the function increases or decreases without bound (towards infinity) as x approaches c
*If the limit as x approaches c from either right or left is $\pm \infty$, then $x=c$ is a vertical asymptote

* Rational Functions: $y=\frac{f(x)}{g(x)}$ If $\mathrm{g}(\mathrm{x})$ has no factors that cancel, then there is a vertical asymptote.

Example 1: Find all the vertical asymptotes of $f(x)=\frac{x^{2}-3 x+2}{x^{2}-4}$

Finding One-Sided Limits approaching Vertical Asymptotes:

Steps:

1) Evaluate Limit using the argument (plug in the value)
2) If Limit is undefined ($\left.\frac{\text { nonzero }}{\text { zero }}\right)$ then there is a vertical asymptote
3) To further evaluate the one-sided limit (determining the direction of arrows as $+\infty$ or $-\infty$)
a. Test decimals 0.1 to the left of the argument x-value
b. Test decimal 0.1 to the right of the argument x-value
4) Determine if the resulting fraction is a positive or negative value
a. A positive decimal value indicates the one-sided limit is $+\infty$
b. A negative decimal value indicates the one-sided limit is $-\infty$

Example 2: Determine $\lim _{x \rightarrow 2} f(x)$ for $f(x)=\frac{x+1}{x-2}$

Algebraic Steps (for \mathbf{x} approaching Real Number): 1) Plug in x-value first (IGNORE one-sided limit) 2) If result is a real number value, the value is the limit. 3) If the result is $\frac{0}{0}$ (indeterminate form) then reduce by i) factoring ii) conjugate method iii) simplify complex fraction 4) Re-evaluate the reduced Expression 4) If result is undefined, and it's a onesided limit, then test using decimals.

Find the following:

3) $\lim _{x \rightarrow-3^{-}} \frac{9-x^{2}}{x-4}=$
4) $\lim _{x \rightarrow 0^{-}} \frac{5 x-x^{2}}{x^{2}-x}=$
5) $\lim _{x \rightarrow-2^{-}} \frac{x^{2}+1}{x+2}=$
6) $\lim _{x \rightarrow 5} \frac{3 x^{2}-1}{25-x^{2}}=$
7) $\lim _{x \rightarrow-3^{+}} \frac{2 x^{2}+3 x-9}{x+3}$
8) $\lim _{x \rightarrow-4^{+}} \frac{2 x^{2}-1}{x^{2}-16}$
9) $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-2}{x^{2}+2 x+1}=\quad$ 10) $\lim _{x \rightarrow 3^{+}} \frac{4 x^{2}-14 x+6}{x-3}=$
