Calculus Ch. 1.5 Notes: Limits Approaching Infinity (Vertical Asymptotes)

Infinite Limits: a limit where the function increases or decreases without bound (towards infinity) as x approaches c

*If the limit as x approaches c from either right or left is $\pm \infty$, then x = c is a vertical asymptote

* Rational Functions: $y = \frac{f(x)}{g(x)}$ If g(x) has no factors that cancel, then there is a vertical asymptote.

Example 1: Find all the vertical asymptotes of $f(x) = \frac{x^2 - 3x + 2}{x^2 - 4}$

Finding One-Sided Limits approaching Vertical Asymptotes:

Steps:

- 1) Evaluate Limit using the argument (plug in the value)
- 2) If Limit is undefined $\left(\frac{nonzero}{zero}\right)$ then there is a vertical asymptote
- 3) To further evaluate the one-sided limit (determining the direction of arrows as $+\infty$ or $-\infty$)
 - a. Test decimals 0.1 to the left of the argument x-value
 - b. Test decimal 0.1 to the right of the argument x-value
- 4) Determine if the resulting fraction is a positive or negative value
 - a. A positive decimal value indicates the one-sided limit is $+\infty$
 - b. A negative decimal value indicates the one-sided limit is $-\infty$

Example 2: Determine $\lim_{x \to 2} f(x)$ for $f(x) = \frac{x+1}{x-2}$

<u>Algebraic Steps (for x approaching Real Number)</u>: 1) Plug in x-value first (IGNORE one-sided limit) 2) If result is a real number value, the value is the limit. 3) If the result is $\frac{0}{0}$ (indeterminate form) then reduce by i) factoring ii) conjugate method iii) simplify complex fraction 4) Re-evaluate the reduced Expression 4) If result is undefined, and it's a one-sided limit, then test using decimals.

Find the following:

3)
$$\lim_{x \to -3^{-}} \frac{9-x^{2}}{x-4} =$$
4)
$$\lim_{x \to 0^{-}} \frac{5x-x^{2}}{x^{2}-x} =$$
5)
$$\lim_{x \to -2^{-}} \frac{x^{2}+1}{x+2} =$$
6)
$$\lim_{x \to 5^{-}} \frac{3x^{2}-1}{25-x^{2}} =$$
7)
$$\lim_{x \to -3^{+}} \frac{2x^{2}+3x-9}{x+3}$$
8)
$$\lim_{x \to -4^{+}} \frac{2x^{2}-1}{x^{2}-16}$$
9)
$$\lim_{x \to 1^{+}} \frac{x^{2}-2}{x^{2}+2x+1} =$$
10)
$$\lim_{x \to 3^{+}} \frac{4x^{2}-14x+6}{x-3} =$$