BC Calculus Unit 10 "Tests for Convergence" Quiz Review WS #1

Calculators Allowed:

1. Which of the following series converges?

(A)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+3}{3n} \right)$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2}{2\sqrt{n}} \right)^n$$

(C)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2\sqrt{n}}{n} \right)$$

(A)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+3}{3n}\right)$$
 (B) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2}{2\sqrt{n}}\right)$ (C) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{2\sqrt{n}}{n}\right)$ (D) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{4-n}{n}\right)$

2. What is the value of $\sum_{n=0}^{\infty} \frac{2^{n+1}}{7^n}$?

3. Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=0}^{\infty} \frac{2^n}{3^n - n^2}$ converges or diverges?

(A)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

(D)
$$\sum_{n=0}^{\infty} \frac{1}{n}$$

4. Calculator active. Find the sequence of partial sums S_1, S_2, S_3, S_4 , and S_5 for the infinite series $\sum_{n=0}^{\infty} \frac{3}{2^{n-1}}$.

- 5. Verify that the infinite series $\sum_{n=1}^{\infty} \frac{3^n + 1}{3^{n+2}}$ diverges by using the *n*th-Term Test for Divergence. Show the value of the limit.
- 6. Which of the following series converge?

$$I. \quad \sum_{n=1}^{\infty} \frac{3^n}{n!}$$

II.
$$\sum_{n=1}^{\infty} \frac{n}{8^n}$$

I.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
 II.
$$\sum_{n=1}^{\infty} \frac{n}{8^n}$$
 III.
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$

- (A) I only
- (B) I and II only
- (C) I and III only
- (D) I, II, and III
- 7. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n}$ conditionally convergent?

- (A) x > -1
- (B) x = -3
- (C) x = -1
- 8. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$.

9. Which of the following series converge?

$$I. \quad \sum_{n=1}^{\infty} \frac{n^{-1}}{\sqrt{n}}$$

II.
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

II.
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
 III.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III
- 10. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{3}{1+2^n}$ is true?
 - (A) Diverges by the *n*th Term test.
 - (B) Diverges by comparison to $\sum_{n=0}^{\infty} \frac{1}{2^n}$.
 - (C) Converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
 - (D) Diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$.
- Which of the following statements about the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}n}{n^2+3}$ is true?
 - (A) The series diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (B) The series diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (C) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (D) The series converges by the Alternating Series Test.

- 12. Which of the following is required in order to apply the Integral Test to the series $\sum_{\infty} a_n$?
 - (A) $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=0}^{\infty} a_n$ is a positive series.
 - (B) $\lim_{n\to\infty} a_n \neq 0$ and $\sum_{n\to\infty} a_n$ is a convergent series.
 - (C) $a_n = f(n)$ and f(x) is positive, continuous, and increasing on $[1, \infty)$.
 - (D) $a_n = f(n)$ and f(x) is positive, continuous, and decreasing on $[1, \infty)$.
- 13. If $a_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{2}{3}$, which of the following series converges?

- (A) $\sum_{n=1}^{\infty} 3^n a_n$ (B) $\sum_{n=1}^{\infty} \frac{2^n}{a_n}$ (C) $\sum_{n=1}^{\infty} a_n \left(\frac{7}{2}\right)^n$ (D) $\sum_{n=1}^{\infty} \frac{(a_n)^2}{3^n}$

14. The infinite series $\sum_{n=0}^{\infty} \frac{1}{7^{n+1}}$ has *n*th partial sum $S_n = \frac{1}{6} \left(\frac{1}{7} - \frac{1}{7^{n+1}} \right)$ for $n \ge 1$. What is the sum of the series?

15. For what value of r does the infinite series $\sum_{n=0}^{\infty} 10r^n$ equal 22?

16. Determine whether the series $\sum_{n=1}^{\infty} \frac{\sin\left[\frac{(2n-1)\pi}{2}\right]}{n}$ converges absolutely, converges conditionally, or diverges.

17. Determine the convergence of the infinite p-series $\sum_{n=1}^{\infty} n^{-n}$.

18. The nth-Term Test can be used to determine divergence for which of the following series?

$$I. \sum_{n=1}^{\infty} \frac{2}{n+1}$$

I.
$$\sum_{n=1}^{\infty} \frac{2}{n+1}$$
 II. $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{4n+1}\right)$ III. $\sum_{n=1}^{\infty} \frac{n(n-2)^2}{3n^3+1}$

III.
$$\sum_{n=1}^{\infty} \frac{n(n-2)^2}{3n^3+1}$$

- (A) III only
- (B) II and III only
- (C) I and III only
- (D) I, II, and III

BC Calculus Unit 10 "Tests for Convergence" Quiz Review WS #2

Calculators Allowed:

1. The infinite series $\sum_{n=0}^{\infty} a_n$ has nth partial sum $S_n = \frac{4^n - 1}{4^{n+1}}$ for $n \ge 1$. What is the sum of the series?

2. Which of the following series diverge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n^2(n+3)}$$

II.
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$$

III.
$$\sum_{n=1}^{\infty} \frac{n!}{n4^n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III
- 3. The nth-Term Test can be used to determine divergence for which of the following series?

$$I. \quad \sum_{n=1}^{\infty} \frac{2n+1}{1-n}$$

II.
$$\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^n$$

III.
$$\sum_{n=1}^{\infty} \frac{2n(n-1)^2}{4n^2 - 3n^3}$$

- (A) I and II only
- (B) II and III only
- (C) I and III only
- (D) I, II, and III
- 4. If b and t are real numbers such that 0 < |t| < |b|, what is the sum of $b^2 \sum_{n=0}^{\infty} \left(\frac{t^2}{b^2}\right)^n$?

- 5. Explain why the Integral Test does not apply to the series $\sum_{n=1}^{\infty} \frac{3}{n^{-2}}$.
- 6. For what values of p will the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{3p+1}}$ converge?

7. Calculator active. Which of the following series matches the following sequence of partial sums 0.1667, 0.3333, 0.4833, 0.6167, 0.7357, ...?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$
 (B) $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$ (C) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$

(B)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$$

$$(C) \sum_{n=1}^{\infty} \frac{n+1}{n+2}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+3)}$$

8. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(7x-3)^n}{n}$ conditionally convergent?

(A)
$$x = \frac{2}{7}$$

(B)
$$x = \frac{4}{2}$$

(A)
$$x = \frac{2}{7}$$
 (B) $x = \frac{4}{7}$ (C) $x > \frac{4}{7}$ (D) $x < \frac{2}{7}$

(D)
$$x < \frac{2}{7}$$

- 9. Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=1}^{\infty} \frac{3n+2}{n^3-2n}$ converges or diverges?
- (A) $\sum_{n=1}^{\infty} \frac{1}{n}$
- (B) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- (C) $\sum_{n=1}^{\infty} \frac{1}{n^3}$
- (D) $\sum_{n=1}^{\infty} \frac{1}{n^3 2n}$
- 10. Verify that the infinite series $\sum_{n=1}^{\infty} \frac{7^{n+1}-2}{7^{n+2}}$ diverges by using the *n*th-Term Test for Divergence. Show the value of the limit.
- 11. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{2^n}{9^n + n}$ is true?
 - (A) The series diverges by the nth Term Test.
 - (B) The series diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (C) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{2^n}{9^n}$.
 - (D) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{9^n}$.
- 12. Which of the following series converge by the Alternating Series Test?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

II.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

III.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e}\right)^n$$

13. Which of the following series is absolutely convergent?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n^4}}$$

II.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

III.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

- (A) I only
- (B) I and II only
- (C) I and III only
- (D) I, II, and III
- 14. Use the Integral test to determine if the series $\sum_{n=1}^{\infty} \frac{3n^2}{n^3+1}$ converges or diverges.

- 15. Which of the following statements are true about the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{n}$?

 I. $a_{n+1} \le a_n$ for all $n \ge 1$.

 II. $\lim_{n \to \infty} a_n \ne 0$

 - III. The series converges by the Alternating Series Test

- A. I only
- B. I and II only
- C. II and III only
- D. I, II, and III

16. What are all values of x > 0 for which the series $\sum_{n=1}^{\infty} \frac{n^2 x^{n+1}}{7^n}$ converges.

17. Which of the following is a convergent p-series?

(A)
$$\sum_{n=1}^{\infty} n^4$$

(B)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$

(B)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$
 (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$

(D)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^3}\right)^{\frac{1}{2}}$$

18. Consider the series $\sum_{n=1}^{\infty} a_n$. If $\frac{a_{n+1}}{a_n} = \frac{1}{2}$ for all integers $n \ge 1$, and $\sum_{n=1}^{\infty} a_n = 64$, then $a_1 = ?$

Answers to Mid-Unit 10 WS#2

1. $\frac{1}{4}$	2. C	3. C	4.	$\frac{b^4}{b^2-t^2}$		5. f(n) is no	t a decreasing f	unction	for $n \ge 1$.	
6. $p > 0$		7. B			8. A	A		9. B			
10. Diverges by <i>n</i> th-Term Test, $\lim_{n\to\infty} a_n = \frac{1}{7}$ 11. C							12.	B	13. B	13. B	
$14. \int_1^\infty f(x) dx$	$dx = \infty$, Serie	es Diverges	15. B		10	5. $x < 7$	7	17. D	18.	32	

BC Calculus Unit 10 "Tests for Convergence" Review WS #3

Calculators Allowed:

1) The infinite series $\sum_{n=1}^{\infty} \frac{3}{4^{n+1}}$ has nth partial sum $S_n = \frac{1}{4} - \frac{1}{4^{n+1}}$. What is the sum of the series?

Use the nth-Term Test for Divergence to determine if the series diverges.

$$2. \quad \sum_{n=0}^{\infty} \frac{\pi^{n+1}}{7^n}$$

$$3. \sum_{n=1}^{\infty} \frac{2(n-2)^2}{3(n+4)^2}$$

$$4. \sum_{n=1}^{\infty} \frac{1}{e^n}$$

- 5) If the infinite series $\sum_{n=1}^{\infty} a^n$ has nth partial sum $S_n = \frac{4}{3}(4^n 1)$ for $n \ge 1$. What is the sum of the series?
- 6) Does the series $\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$ converge or diverge? If it converges find its sum.

7) What is the sum of the infinite geometric series $11 + -\frac{11}{3} + \frac{11}{9} + -\frac{11}{27} + \cdots$?

- 8) What is the value of $\sum_{n=1}^{\infty} \frac{(-e)^{n+1}}{9^n}$?
- For what value of a does the infinite series $\sum_{n=0}^{\infty} a \left(-\frac{3}{5}\right)^n$ equal 15? 9)

The nth-Term Test can be used to determine divergence for which of the following series?

I.
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{3n^3 - 2n + 1}$$

I.
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{3n^3 - 2n + 1}$$
 II.
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{2n^2 - 3n^3 + 1}$$

III.
$$\sum_{n=1}^{\infty} \ln \frac{1}{n}$$

- A. III only
- B. I and III only
- C. II and III only
- D. I, II, and III
- Verify that the infinite series $\sum_{n=1}^{\infty} \frac{6^n + 1}{6^{n+1}}$ diverges by using the *n*th-Term Test for Divergence. Show the value of the limit.

12) Use the Integral Test to determine the convergence or divergence of the series $\sum \frac{1}{n^5}$.

- Prove the Integral Test applies to the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3}$. Determine the convergence or divergence of the series.
- 14) Use the Integral Test to determine if the series $\sum_{n=1}^{\infty} \frac{4n}{2n^2+1}$ converges or diverges.
- 15) For what values of p will the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{1-p}}$ converge?
- 16) For what values of p will both infinite series $\sum_{n=1}^{\infty} \left(\frac{3}{p}\right)^n$ and $\sum_{n=1}^{\infty} \frac{1}{n^{5-p}}$ converge?

17) Which of the following is a divergent p-series?

A.
$$\sum_{n=1}^{\infty} n^{-n}$$

B.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

C.
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

$$D. \sum_{n=1}^{\infty} \frac{1}{n^3}$$

18) Which of the following series converges?

$$(A) \qquad \sum_{n=1}^{\infty} \frac{3n}{2n^2 + 1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{3n^2}{n + 2n^2}$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$$

(D)
$$\sum_{n=1}^{\infty} \frac{3n^2}{2n^3 + 3n}$$

$$(E) \qquad \sum_{n=1}^{\infty} \frac{n-1}{n4^n}$$

Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=1}^{\infty} \frac{5^n}{7^n - n^2}$ diverges or converges?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$(C) \qquad \sum_{n=1}^{\infty} \frac{1}{7^n}$$

(D)
$$\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$$

Use the Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n-2}{n5^n}$. You must identify the series you are using for comparison.

21) Determine whether the series $\sum_{n=1}^{\infty} \frac{n5^n}{4n^4 - 3}$ converges or diverges. Identify the test for convergence used.

22) Explain why the Alternating Series Test does not apply to the series $\sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi)}{n^2}$.

23) Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln(n+1)}$.

24) Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}$$

II.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\pi^n}$$

III.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{1+n^2}$$

- A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III

- 25) Which of the following statements is true?
 - A. $\sum_{n=1}^{\infty} \frac{(-1)^n (1-n)}{n}$ converges by the Alternating Series Test.
 - B. $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{2n}$ converges by the Alternating Series Test.
 - C. $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{4\sqrt{n}}$ converges by the Alternating Series Test.
 - D. $\sum_{n=1}^{\infty} \frac{(-1)^n 2\sqrt{n}}{n}$ converges by the Alternating Series Test.

26) Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=0}^{\infty} \frac{n^4}{3^n}$.

If the Ratio Test is applied to the series $\sum_{n=0}^{\infty} \frac{6^n}{(n+1)^n}$, which of the following inequalities results, implying that the series converges?

A.
$$\lim_{n \to \infty} \frac{6^n}{(n+1)^n} < 1$$

A.
$$\lim_{n \to \infty} \frac{6^n}{(n+1)^n} < 1$$
 B. $\lim_{n \to \infty} \frac{6(n+1)^n}{(n+2)^{n+1}} < 1$ C. $\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^n} < 1$ D. $\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^{n+1}} < 1$

C.
$$\lim_{n\to\infty} \frac{6^{n+1}}{(n+1)^n} < 1$$

D.
$$\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^{n+1}} < 1$$

28) If $a_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 5$, which of the following series converges?

A.
$$\sum_{n=1}^{\infty} \frac{a_n}{n^2}$$

B.
$$\sum_{n=1}^{\infty} \frac{a_n}{2^n}$$

C.
$$\sum_{n=1}^{\infty} \frac{a_n}{n^5}$$

$$D. \sum_{n=1}^{\infty} \frac{a_n}{7^n}$$

29) What are all values of x > 0 for which the series $\sum_{n=1}^{\infty} \frac{6n^3}{x^n}$ converges?

30) Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

II.
$$\sum_{n=0}^{\infty} \frac{9^n}{n^5}$$

III.
$$\sum_{n=0}^{\infty} \frac{5n}{2n-1}$$

A. I only

- B. I and II only
- C. I and III only D. I, II, and III

31) For what values of x is the series $\sum_{n=0}^{\infty} (-1)^n (5x+1)^n$ absolutely convergent?

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(5x-2)^n}{n}$ conditionally convergent?

A.
$$x > \frac{3}{5}$$

B.
$$x = \frac{3}{5}$$
 C. $x = \frac{1}{5}$

C.
$$x = \frac{1}{5}$$

D.
$$x < \frac{1}{5}$$

- Which of the following statements is true about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 \sqrt{n}}.$
 - A. The series converges conditionally.
 - B. The series converges absolutely.
 - C. The series converges but neither conditionally nor absolutely.
 - D. The series diverges.

34) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+5}$ converges absolutely, converges conditionally, or diverges.

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)!}$ converges absolutely, converges conditionally, or diverges.