BC Calculus Unit 10 "Tests for Convergence" Quiz Review WS #1

Calculators Allowed:

1. Which of the following series converges?

(A)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+3}{3n} \right)$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2}{2\sqrt{n}} \right)^n$$

(C)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2\sqrt{n}}{n} \right)$$

(A)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+3}{3n}\right)$$
 (B) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2}{2\sqrt{n}}\right)$ (C) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{2\sqrt{n}}{n}\right)$ (D) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{4-n}{n}\right)$

2. What is the value of $\sum_{n=0}^{\infty} \frac{2^{n+1}}{7^n}$?

3. Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=0}^{\infty} \frac{2^n}{3^n - n^2}$ converges or diverges?

(A)
$$\sum_{i=1}^{\infty} \left(\frac{3}{2}\right)^n$$

(B)
$$\sum_{n=0}^{\infty} \frac{1}{3^n}$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

4. Calculator active. Find the sequence of partial sums S_1, S_2, S_3, S_4 , and S_5 for the infinite series $\sum_{n=1}^{\infty} \frac{3}{2^{n-1}}$.

- 5. Verify that the infinite series $\sum_{n=1}^{\infty} \frac{3^n + 1}{3^{n+2}}$ diverges by using the *n*th-Term Test for Divergence. Show the value of the limit.
- 6. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

II.
$$\sum_{n=1}^{\infty} \frac{n}{8^n}$$

I.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
 II.
$$\sum_{n=1}^{\infty} \frac{n}{8^n}$$
 III.
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$

- (A) I only
- (B) I and II only
- (C) I and III only
- (D) I, II, and III
- 7. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n}$ conditionally convergent?

- (A) x > -1
- (C) x = -1
- 8. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$.

9. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n^{-1}}{\sqrt{n}}$$

II.
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

II.
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
 III.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III
- 10. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{3}{1+2^n}$ is true?
 - (A) Diverges by the *n*th Term test.
 - (B) Diverges by comparison to $\sum_{n=0}^{\infty} \frac{1}{2^n}$.
 - (C) Converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
 - (D) Diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$.
- Which of the following statements about the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}n}{n^2+3}$ is true?
 - (A) The series diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (B) The series diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (C) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (D) The series converges by the Alternating Series Test.

- 12. Which of the following is required in order to apply the Integral Test to the series $\sum_{\infty} a_n$?
 - (A) $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=0}^{\infty} a_n$ is a positive series.
 - (B) $\lim_{n\to\infty} a_n \neq 0$ and $\sum_{n=0}^{\infty} a_n$ is a convergent series.
 - (C) $a_n = f(n)$ and f(x) is positive, continuous, and increasing on $[1, \infty)$.
 - (D) $a_n = f(n)$ and f(x) is positive, continuous, and decreasing on $[1, \infty)$.
- 13. If $a_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{2}{3}$, which of the following series converges?

- (A) $\sum_{n=1}^{\infty} 3^n a_n$ (B) $\sum_{n=1}^{\infty} \frac{2^n}{a_n}$ (C) $\sum_{n=1}^{\infty} a_n \left(\frac{7}{2}\right)^n$ (D) $\sum_{n=1}^{\infty} \frac{(a_n)^2}{3^n}$

14. The infinite series $\sum_{n=0}^{\infty} \frac{1}{7^{n+1}}$ has *n*th partial sum $S_n = \frac{1}{6} \left(\frac{1}{7} - \frac{1}{7^{n+1}} \right)$ for $n \ge 1$. What is the sum of the series?

15. For what value of r does the infinite series $\sum_{n=0}^{\infty} 10r^n$ equal 22?

16. Determine whether the series $\sum_{n=1}^{\infty} \frac{\sin\left[\frac{(2n-1)\pi}{2}\right]}{n}$ converges absolutely, converges conditionally, or diverges.

17. Determine the convergence of the infinite p-series $\sum_{n=1}^{\infty} n^{-n}$.

18. The *n*th-Term Test can be used to determine divergence for which of the following series?

$$I. \sum_{n=1}^{\infty} \frac{2}{n+1}$$

I.
$$\sum_{n=1}^{\infty} \frac{2}{n+1}$$
 II. $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{4n+1}\right)$ III. $\sum_{n=1}^{\infty} \frac{n(n-2)^2}{3n^3+1}$

III.
$$\sum_{n=1}^{\infty} \frac{n(n-2)^2}{3n^3 + 1}$$

- (A) III only
- (B) II and III only
- (C) I and III only
- (D) I, II, and III