10-2 Finding Arc Measures

VOCABULARY

Major arc	•
Measure of a minor arc	·
Measure of a major arc	<u> </u>
Congruent circles	·
Congruent arcs	•
The measure of a minor arc is the measure of its	The measure of the entire
circle is The measure of a major arc is the difference between	and the measure of

Create a problem using the Arc Addition Postulate and the drawing below:

Examples: Refer to the diagrams below-

Calculate $m \widehat{MN}$.

Find segment PQ. $m\widehat{PQ}$ =90°

Vocabulary

Circumference	
---------------	--

Arc length _____

Theorem: Circumference of a Circle – The circumference C of a circle is C = _____ or C = _____

where d is the diameter of the circle and r is the radius is of the circle.

Example:

a. Circumference of a circle with a radius 11 meters:

b. Radius of a circle with circumference 18 yards:

Arc Length Corollary: In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$\frac{\text{Arc length of } \widehat{AB}}{2\pi r} = \frac{\widehat{mAB}}{360^{\circ}}, \text{ or }$$

Arc length of
$$\widehat{AB} = \frac{\widehat{mAB}}{360^{\circ}} \cdot 2\pi r$$

Power Point Examples:

Find the length of arc JK.

10-2 Practice

Measuring Angles and Arcs

 \overline{AC} and \overline{DB} are diameters of $\bigcirc Q$. Identify each arc as a major arc, minor arc, or semicircle of the circle. Then find its measure.

1. $m\widehat{AE}$

2. $m\widehat{AB}$

3. mEDC

4. mADC

5. \widehat{mABC}

6. $m\widehat{BC}$

 \overline{FH} and \overline{EG} are diameters of $\bigcirc P$. Find each measure.

7. mEF

8. $m\widehat{DE}$

9. $m\widehat{FG}$

10. $m\widehat{DHG}$

11. $m\widehat{DFG}$

12. $m\widehat{DGE}$

Use $\odot Z$ to find each arc length. Round to the nearest hundredth.

13.
$$\widehat{QPT}$$
, if $QZ = 10$ inches

14.
$$\widehat{QR}$$
, if $PZ = 12$ feet

15. \widehat{PQR} , if TR = 15 meters

- 16. \widehat{QPS} , if ZQ = 7 centimeters
- 17. **HOMEWORK** Refer to the table, which shows the number of hours students at Leland High School say they spend on homework each night.
 - a. If you were to construct a circle graph of the data, how many degrees would be allotted to each category?
 - **b.** Describe the arcs associated with each category.

्रात्वकार्यक्षीयाम्	
Less than 1 hour	8%
1-2 hours	29%
2-3 hours	58%
3-4 hours	3%
Over 4 hours	2%

Example 2 \overline{AD} and \overline{CG} are diameters of ΘB . Identify each arc as a major arc, minor arc, or semicircle. Then find its measure.

16. $m\widehat{CD}$

17. mAC

19. $m\widehat{CGD}$

20. mGCF

22. \widehat{mAG}

23. mACF

Example 3

- **24. SHOPPING** The graph shows the results of a survey in which teens were asked where the best place was to shop for clothes.
 - **a.** What would be the arc measures associated with the mall and vintage stores categories?
 - **b.** Describe the kinds of arcs associated with the category "Mall" and the category "None of these."
 - **c.** Are there any congruent arcs in this graph? Explain.

- **a.** If you were to construct a circle graph of this information, what would be the arc measures associated with the first two categories?
- **b.** Describe the kind of arcs associated with the first category and the last category.
- **c.** Are there any congruent arcs in this graph? Explain.

	G
Best Places to	Clothes Shop
None of these	
Online 9 %	
Vintage stores	
Flea markets ————————————————————————————————————	

Dropped F	ood
Do you eat food dropped on the floor?	
Not safe to eat	78%
Three-second rule*	10%
Five-second rule*	8%
Ten-second rule*	4%

Source: American Diabetic Association

* The length of time the food is on the floor.

Examples 2, 4 ENTERTAINMENT Use the Ferris wheel shown to find each measure.

26. mFG	26.	mFG
----------------	-----	-----

27. mH

29. mIFH

31. mGHK

32.
$$m\widehat{HK}$$

33. mJKG

35. mHGF

Example 5

Use **OP** to find the length of each arc. Round to the nearest hundredth.

36. \widehat{RS} , if the radius is 2 inches

38. \widehat{QR} , if PS = 4 millimeters

39. \widehat{RS} , if RT = 15 inches

40. \widehat{QRS} , if RT = 11 feet

41. \widehat{RTS} , if PQ = 3 meters

