#### Exercises for Section 12.1

In Exercises 1-8, find the domain of the vector-valued function.

$$\mathbf{1.} \ \mathbf{r}(t) = 5t\mathbf{i} - 4t\mathbf{j} - \frac{1}{t}\mathbf{k}$$

2. 
$$\mathbf{r}(t) = \sqrt{4 - t^2} \mathbf{i} + t^2 \mathbf{j} - 6t \mathbf{k}$$

$$\mathbf{3}_{\mathbf{r}}(t) = \ln t \mathbf{i} - e^t \mathbf{j} - t \mathbf{k}$$

4. 
$$\mathbf{r}(t) = \sin t \mathbf{i} + 4 \cos t \mathbf{j} + t \mathbf{k}$$

5. 
$$\mathbf{r}(t) = \mathbf{F}(t) + \mathbf{G}(t)$$
 where

$$\mathbf{F}(t) = \cos t \mathbf{i} - \sin t \mathbf{j} + \sqrt{t} \mathbf{k}, \quad \mathbf{G}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$$

6. 
$$\mathbf{r}(t) = \mathbf{F}(t) - \mathbf{G}(t)$$
 where

$$\mathbf{F}(t) = \ln t \mathbf{i} + 5t \mathbf{j} - 3t^2 \mathbf{k}, \quad \mathbf{G}(t) = \mathbf{i} + 4t \mathbf{j} - 3t^2 \mathbf{k}$$

7. 
$$\mathbf{r}(t) = \mathbf{F}(t) \times \mathbf{G}(t)$$
 where

$$\mathbf{F}(t) = \sin t \mathbf{i} + \cos t \mathbf{j}, \quad \mathbf{G}(t) = \sin t \mathbf{j} + \cos t \mathbf{k}$$

8. 
$$\mathbf{r}(t) = \mathbf{F}(t) \times \mathbf{G}(t)$$
 where

$$\mathbf{F}(t) = t^3 \mathbf{i} - t \mathbf{j} + t \mathbf{k}, \quad \mathbf{G}(t) = \sqrt[3]{t} \, \mathbf{i} + \frac{1}{t+1} \, \mathbf{j} + (t+2) \mathbf{k}$$

In Exercises 9-12, evaluate (if possible) the vector-valued function at each given value of t.

9. 
$$\mathbf{r}(t) = \frac{1}{2}t^2\mathbf{i} - (t-1)\mathbf{j}$$

(a) 
$$\mathbf{r}(1)$$
 (b)  $\mathbf{r}(0)$  (c)  $\mathbf{r}(s+1)$ 

(d) 
$$r(2 + \Delta t) - r(2)$$

10. 
$$\mathbf{r}(t) = \cos t \mathbf{i} + 2 \sin t \mathbf{j}$$

(a) 
$$\mathbf{r}(0)$$
 (b)  $\mathbf{r}(\pi/4)$  (c)  $\mathbf{r}(\theta - \pi)$ 

(d) 
$$r(\pi/6 + \Delta t) - r(\pi/6)$$

11. 
$$\mathbf{r}(t) = \ln t \mathbf{i} + \frac{1}{t} \mathbf{j} + 3t \mathbf{k}$$

(a) 
$$\mathbf{r}(2)$$
 (b)  $\mathbf{r}(-3)$  (c)  $\mathbf{r}(t-4)$ 

(d) 
$$\mathbf{r}(1 + \Delta t) - \mathbf{r}(1)$$

12. 
$$\mathbf{r}(t) = \sqrt{t} \, \mathbf{i} + t^{3/2} \, \mathbf{j} + e^{-t/4} \, \mathbf{k}$$

(a) 
$$\mathbf{r}(0)$$
 (b)  $\mathbf{r}(4)$  (c)  $\mathbf{r}(c+2)$ 

(d) 
$$\mathbf{r}(9 + \Delta t) - \mathbf{r}(9)$$

In Exercises 13 and 14, find  $\|\mathbf{r}(t)\|$ .

13. 
$$r(t) = \sin 3ti + \cos 3tj + tk$$

14. 
$$\mathbf{r}(t) = \sqrt{t} \, \mathbf{i} + 3t \, \mathbf{j} - 4t \, \mathbf{k}$$

Think About It In Exercises 15 and 16, find  $r(t) \cdot u(t)$ . Is the result a vector-valued function? Explain.

15. 
$$\mathbf{r}(t) = (3t - 1)\mathbf{i} + \frac{1}{4}t^3\mathbf{j} + 4\mathbf{k}$$

$$\mathbf{u}(t) = t^2 \mathbf{i} - 8 \mathbf{j} + t^3 \mathbf{k}$$

**16.** 
$$\mathbf{r}(t) = \langle 3 \cos t, 2 \sin t, t - 2 \rangle$$

$$\mathbf{u}(t) = \langle 4 \sin t, -6 \cos t, t^2 \rangle$$

In Exercises 17-20, match the equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]

www.GalcChat:com:for.worked=out/solutions-to;odd=numbered:exercises

(a)





(c)



(d)



17. 
$$\mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j} + t^2\mathbf{k}, \quad -2 \le t \le 2$$

**18.** 
$$\mathbf{r}(t) = \cos(\pi t)\mathbf{i} + \sin(\pi t)\mathbf{j} + t^2\mathbf{k}, -1 \le t \le 1$$

**19.** 
$$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + e^{0.75t}\mathbf{k}, -2 \le t \le 2$$

**20.** 
$$\mathbf{r}(t) = t\mathbf{i} + \ln t\mathbf{j} + \frac{2t}{3}\mathbf{k}, \quad 0.1 \le t \le 5$$

21. Think About It The four figures below are graphs of the vector-valued function

$$\mathbf{r}(t) = 4\cos t\mathbf{i} + 4\sin t\mathbf{j} + \frac{t}{4}\mathbf{k}.$$

Match each of the four graphs with the point in space from which the helix is viewed. The four points are (0, 0, 20), (20, 0, 0), (-20, 0, 0),and (10, 20, 10).

(a)





(d)



Generated by Mathematica



#### 22. Sketch three graphs of the vector-valued function

$$\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + 2\mathbf{k}$$

as viewed from each point.

#### In Exercises 23-38, sketch the curve represented by the vectorvalued function and give the orientation of the curve.

**23.** 
$$\mathbf{r}(t) = 3t\mathbf{i} + (t-1)\mathbf{j}$$

**24.** 
$$\mathbf{r}(t) = (1-t)\mathbf{i} + \sqrt{t}\mathbf{j}$$

**25.** 
$$\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}$$

**26.** 
$$\mathbf{r}(t) = (t^2 + t)\mathbf{i} + (t^2 - t)\mathbf{j}$$

**27.** 
$$\mathbf{r}(\theta) = \cos \theta \mathbf{i} + 3 \sin \theta \mathbf{j}$$
 **28.**  $\mathbf{r}(t) = 2 \cos t \mathbf{i} + 2 \sin t \mathbf{j}$ 

**28.** 
$$\mathbf{r}(t) = 2 \cos t \mathbf{i} + 2 \sin t \mathbf{j}$$

29. 
$$\mathbf{r}(\theta) = 3 \sec \theta \mathbf{i} + 2 \tan \theta$$

**29.** 
$$\mathbf{r}(\theta) = 3 \sec \theta \mathbf{i} + 2 \tan \theta \mathbf{j}$$
 **30.**  $\mathbf{r}(t) = 2 \cos^3 t \mathbf{i} + 2 \sin^3 t \mathbf{j}$ 

**31.** 
$$\mathbf{r}(t) = (-t+1)\mathbf{i} + (4t+2)\mathbf{j} + (2t+3)\mathbf{k}$$

32. 
$$\mathbf{r}(t) = t\mathbf{i} + (2t - 5)\mathbf{j} + 3t\mathbf{k}$$

33. 
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + t\mathbf{k}$$

**34.** 
$$\mathbf{r}(t) = 3\cos t\mathbf{i} + 4\sin t\mathbf{j} + \frac{t}{2}\mathbf{k}$$

**35.** 
$$\mathbf{r}(t) = 2 \sin t \mathbf{i} + 2 \cos t \mathbf{j} + e^{-t} \mathbf{k}$$

**36.** 
$$\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + \frac{3}{2} t \mathbf{k}$$

37. 
$$\mathbf{r}(t) = \langle t, t^2, \frac{2}{3}t^3 \rangle$$

38. 
$$\mathbf{r}(t) = \langle \cos t + t \sin t, \sin t - t \cos t, t \rangle$$

#### In Exercises 39–42, use a computer algebra system to graph the vector-valued function and identify the common curve.

**39.** 
$$\mathbf{r}(t) = -\frac{1}{2}t^2\mathbf{i} + t\mathbf{j} - \frac{\sqrt{3}}{2}t^2\mathbf{k}$$

**40.** 
$$\mathbf{r}(t) = t\mathbf{i} - \frac{\sqrt{3}}{2}t^2\mathbf{j} + \frac{1}{2}t^2\mathbf{k}$$

**41.** 
$$\mathbf{r}(t) = \sin t \mathbf{i} + \left(\frac{\sqrt{3}}{2}\cos t - \frac{1}{2}t\right)\mathbf{j} + \left(\frac{1}{2}\cos t + \frac{\sqrt{3}}{2}\right)\mathbf{k}$$

**42.** 
$$\mathbf{r}(t) = -\sqrt{2}\sin t\mathbf{i} + 2\cos t\mathbf{j} + \sqrt{2}\sin t\mathbf{k}$$

#### Think About It In Exercises 43 and 44, use a computer algebra system to graph the vector-valued function r(t). For each u(t), make a conjecture about the transformation (if any) of the graph of r(t). Use a computer algebra system to verify your conjecture.

43. 
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + \frac{1}{2}t\mathbf{k}$$

(a) 
$$\mathbf{u}(t) = 2(\cos t - 1)\mathbf{i} + 2\sin t\mathbf{j} + \frac{1}{2}t\mathbf{k}$$

(b) 
$$\mathbf{u}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + 2t\mathbf{k}$$

(c) 
$$\mathbf{u}(t) = 2\cos(-t)\mathbf{i} + 2\sin(-t)\mathbf{j} + \frac{1}{2}(-t)\mathbf{k}$$

(d) 
$$\mathbf{u}(t) = \frac{1}{2}t\mathbf{i} + 2\sin t\mathbf{j} + 2\cos t\mathbf{k}$$

(e) 
$$\mathbf{u}(t) = 6 \cos t \mathbf{i} + 6 \sin t \mathbf{j} + \frac{1}{2} t \mathbf{k}$$

**44.** 
$$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \frac{1}{2}t^3\mathbf{k}$$

(a) 
$$\mathbf{u}(t) = t\mathbf{i} + (t^2 - 2)\mathbf{j} + \frac{1}{2}t^3\mathbf{k}$$

(b) 
$$\mathbf{u}(t) = t^2 \mathbf{i} + t \mathbf{j} + \frac{1}{2} t^3 \mathbf{k}$$

(c) 
$$\mathbf{u}(t) = t\mathbf{i} + t^2\mathbf{j} + (\frac{1}{2}t^3 + 4)\mathbf{k}$$

(d) 
$$\mathbf{u}(t) = t\mathbf{i} + t^2\mathbf{j} + \frac{1}{9}t^3\mathbf{k}$$

(e) 
$$\mathbf{u}(t) = (-t)\mathbf{i} + (-t)^2\mathbf{j} + \frac{1}{2}(-t)^3\mathbf{k}$$

### In Exercises 45-52, represent the plane curve by a vector. valued function. (There are many correct answers.)

**45.** 
$$y = 4 - x$$

**46.** 
$$2x - 3y + 5 = 0$$

**47.** 
$$y = (x - 2)^2$$

48. 
$$v = 4 - x^2$$

**49.** 
$$x^2 + y^2 = 25$$

**50.** 
$$(x-2)^2 + y^2 = 4$$

**51.** 
$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

52. 
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

#### 53. A particle moves on a straight-line path that passes through the points (2, 3, 0) and (0, 8, 8). Find a vector-valued function for the path. Use a computer algebra system to graph your function. (There are many correct answers.)

#### 54. The outer edge of a playground slide is in the shape of a helix of radius 1.5 meters. The slide has a height of 2 meters and makes one complete revolution from top to bottom. Find a vector valued function for the helix. Use a computer algebra system to graph your function. (There are many correct answers.)

#### In Exercises 55-58, find vector-valued functions forming the boundaries of the region in the figure. State the interval for the parameter of each function.











# In Exercises 59-66, sketch the space curve represented by the

| intersection of the surfaces. Then vector-valued function using the give | represent the en parameter. | curve by |
|--------------------------------------------------------------------------|-----------------------------|----------|
| Surfaces                                                                 | Paramete                    | r        |
| <b>59.</b> $z = x^2 + y^2$ , $x + y = 0$                                 | x = t                       |          |

**61.** 
$$x^2 + y^2 = 4$$
,  $z = x^2$ 

**60.**  $z = x^2 + y^2$ , z = 4

**62.** 
$$4x^2 + 4y^2 + z^2 = 16$$
,  $x = z^2$ 

$$62. \ 4x + 4y - + z^2 = 10, \quad x = z^2$$

**63.** 
$$x^2 + y^2 + z^2 = 4$$
,  $x + z = 2$ 

**64.** 
$$x^2 + y^2 + z^2 = 10$$
,  $x + y = 4$ 

**65.** 
$$x^2 + z^2 = 4$$
,  $y^2 + z^2 = 4$ 

**66.** 
$$x^2 + y^2 + z^2 = 16$$
,  $xy = 4$ 

$$x = 2\cos t$$

$$x=2\sin t$$

$$\tau = t$$

$$x = 1 + \sin t$$

$$x - 1 + \sin i$$

$$x=2+\sin t$$

$$x = t$$
 (first octant)

$$x = t$$
 (first octant)

839

- Show that the vector-valued function
  - $\mathbf{r}(t) = t\mathbf{i} + 2t\cos t\mathbf{j} + 2t\sin t\mathbf{k}$
  - lies on the cone  $4x^2 = y^2 + z^2$ . Sketch the curve.
- Show that the vector-valued function
  - $\mathbf{r}(t) = e^{-t}\cos t\mathbf{i} + e^{-t}\sin t\mathbf{j} + e^{-t}\mathbf{k}$
  - lies on the cone  $z^2 = x^2 + y^2$ . Sketch the curve.

#### In Exercises 69-74, evaluate the limit.

**69.** 
$$\lim_{t \to 2} \left( t \mathbf{i} + \frac{t^2 - 4}{t^2 - 2t} \mathbf{j} + \frac{1}{t} \mathbf{k} \right)$$

70. 
$$\lim_{t\to 0} \left(e^t\mathbf{i} + \frac{\sin t}{t}\mathbf{j} + e^{-t}\mathbf{k}\right)$$

71. 
$$\lim_{t\to 0} \left(t^2\mathbf{i} + 3t\mathbf{j} + \frac{1-\cos t}{t}\mathbf{k}\right)$$

72. 
$$\lim_{t\to 1} \left( \sqrt{t} \,\mathbf{i} + \frac{\ln t}{t^2 - 1} \,\mathbf{j} + 2t^2 \,\mathbf{k} \right)$$

73. 
$$\lim_{t\to 0} \left(\frac{1}{t}\mathbf{i} + \cos t\mathbf{j} + \sin t\mathbf{k}\right)$$

74. 
$$\lim_{t\to\infty} \left( e^{-t} \mathbf{i} + \frac{1}{t} \mathbf{j} + \frac{t}{t^2 + 1} \mathbf{k} \right)$$

#### In Exercises 75-80, determine the interval(s) on which the vector-valued function is continuous.

75. 
$$\mathbf{r}(t) = t\mathbf{i} + \frac{1}{t}\mathbf{j}$$

76. 
$$\mathbf{r}(t) = \sqrt{t}\,\mathbf{i} + \sqrt{t-1}\,\mathbf{j}$$

$$\mathbf{77.} \ \mathbf{r}(t) = t\mathbf{i} + \arcsin t\mathbf{j} + (t-1)\mathbf{k}$$

78. 
$$\mathbf{r}(t) = 2e^{-t}\mathbf{i} + e^{-t}\mathbf{j} + \ln(t-1)\mathbf{k}$$

79. 
$$\mathbf{r}(t) = \langle e^{-t}, t^2, \tan t \rangle$$

79. 
$$\mathbf{r}(t) = \langle e^{-t}, t^2, \tan t \rangle$$
 80.  $\mathbf{r}(t) = \langle 8, \sqrt{t}, \sqrt[3]{t} \rangle$ 

## **Writing About Concepts**

- 81. State the definition of a vector-valued function in the plane and in space.
- 82. If  $\mathbf{r}(t)$  is a vector-valued function, is the graph of the vectorvalued function  $\mathbf{u}(t) = \mathbf{r}(t-2)$  a horizontal translation of the graph of  $\mathbf{r}(t)$ ? Explain your reasoning.
- 83. Consider the vector-valued function

$$\mathbf{r}(t) = t^2 \mathbf{i} + (t - 3)\mathbf{j} + t\mathbf{k}.$$

Write a vector-valued function s(t) that is the specified transformation of r.

- (a) A vertical translation three units upward
- (b) A horizontal translation two units in the direction of the negative x-axis
- (c) A horizontal translation five units in the direction of the positive y-axis
- 84. State the definition of continuity of a vector-valued function. Give an example of a vector-valued function that is defined but not continuous at t = 2.

85. Let  $\mathbf{r}(t)$  and  $\mathbf{u}(t)$  be vector-valued functions whose limits exist as  $t \rightarrow c$ . Prove that

$$\lim_{t\to c} [\mathbf{r}(t)\times\mathbf{u}(t)] = \lim_{t\to c} \mathbf{r}(t)\times\lim_{t\to c} \mathbf{u}(t).$$

**86.** Let  $\mathbf{r}(t)$  and  $\mathbf{u}(t)$  be vector-valued functions whose limits exist as  $t \rightarrow c$ . Prove that

$$\lim_{t\to c} \left[ \mathbf{r}(t) \cdot \mathbf{u}(t) \right] = \lim_{t\to c} \mathbf{r}(t) \cdot \lim_{t\to c} \mathbf{u}(t).$$

- 87. Prove that if r is a vector-valued function that is continuous at c, then  $\|\mathbf{r}\|$  is continuous at c.
- 88. Verify that the converse of Exercise 87 is not true by finding a vector-valued function  $\mathbf{r}$  such that  $\|\mathbf{r}\|$  is continuous at c but  $\mathbf{r}$ is not continuous at c.

True or False? In Exercises 89-92, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.

- 89. If f, g, and h are first-degree polynomial functions, then the curve given by x = f(t), y = g(t), and z = h(t) is a line.
- **90.** If the curve given by x = f(t), y = g(t), and z = h(t) is a line, then f, g, and h are first-degree polynomial functions of t.
- **91.** Two particles traveling along the curves  $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}$  and  $\mathbf{u}(t) = (2 + t)\mathbf{i} + 8t\mathbf{j}$  will collide.
- 92. The vector-valued function  $\mathbf{r}(t) = t^2 \mathbf{i} + t \sin t \mathbf{j} + t \cos t \mathbf{k}$ lies on the paraboloid  $x = y^2 + z^2$ .

#### Section Project: Witch of Agnesi

In Section 3.5, you studied a famous curve called the Witch of Agnesi. In this project you will take a closer look at this function.

Consider a circle of radius a centered on the y-axis at (0, a). Let A be a point on the horizontal line y = 2a, let O be the origin, and let B be the point where the segment OA intersects the circle. A point P is on the Witch of Agnesi if P lies on the horizontal line through B and on the vertical line through A.

(a) Show that the point A is traced out by the vector-valued function

$$\mathbf{r}_{A}(\theta) = 2a \cot \theta \mathbf{i} + 2a \mathbf{j}, \quad 0 < \theta < \pi$$

where  $\theta$  is the angle that OA makes with the positive x-axis.

(b) Show that the point B is traced out by the vector-valued function

$$\mathbf{r}_{R}(\theta) = a \sin 2\theta \mathbf{i} + a(1 - \cos 2\theta) \mathbf{j}, \quad 0 < \theta < \pi.$$

- (c) Combine the results in parts (a) and (b) to find the vector-valued function  $\mathbf{r}(\theta)$  for the Witch of Agnesi. Use a graphing utility to graph this curve for a = 1.
- (d) Describe the limits  $\lim_{\theta \to 0^+} \mathbf{r}(\theta)$  and  $\lim_{\theta \to \pi^-} \mathbf{r}(\theta)$ .
- (e) Eliminate the parameter  $\theta$  and determine the rectangular equation of the Witch of Agnesi. Use a graphing utility to graph this function for a = 1 and compare your graph with that obtained in part (c).