<u>AP Calculus – 2.2 Notes - Limit Definition of a Derivative</u>

Goal: To discover a formula to calculate the slope (steepness) of all tangent lines to a curved graph.

General Limit Definition of the Derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternate Limit Definition of a derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

<u>f'(x) is "f prime of x"</u>: This is the notation for the derivative function.

Derivative is the slope (steepness) of a curve at a single point

*The <u>derivative function</u> is a **slope-finding formula** for a curved graph, where the slope is of the curve is ever-changing.

General Limit Definition of the Derivative:

Alternate Limit Definition of a derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad \qquad f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Example 1: (a) Find the general derivative of $f(x) = x^2$

(b) Write the equation of the tangent line to f(x) at x = 1 (point-slope form: $y - y_1 = m(x - x_1)$)

(c) Write the equation of the tangent line to f(x) at x = -5

To Recap:

* f(x) is the **height-finding formula** (finds the y-value of graph at that point)

*Since f(1) = 1, this tells us that when x = 1, the height of the graph has a y-value of 1

*f'(x) is the **slope-finding formula** for the f(x) graph.

*Since f'(1) = 2, this tells us that when x = 1, the slope of the tangent line to f(x) has a slope (steepness) of 2.

General Limit Definition of the Derivative:

Alternate Limit Definition of a derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Example 2: (a) Find the general derivative of $f(x) = \sqrt{x}$

(b) Write the equation of the tangent line to f(x) at x = 2 (point-slope form: $y - y_1 = m(x - x_1)$)

Example 3: Use the alternative derivative definition to find slope of $f(x) = \sqrt{x}$ at x = 2.

<u>Differentiability</u>: In order for a function to be **differentiable** (smooth curve) at a point a, then the graph must be continuous at that point, cannot contain a sharp turn & cannot have a vertical tangent at the point.

General Limit Definition of the Derivative:

Classwork Examples:

Find the derivative using limits

1.
$$f(x) = 7 - 6x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $2. \ y = 5x^2 - x$

3. $y = \sqrt{5x + 2}$	4. $f(x) = \frac{1}{x-2}$