AP Calculus - 2.2 Notes - Limit Definition of a Derivative

Goal: To discover a formula to calculate the slope (steepness) of all tangent lines to a curved graph.

General Limit Definition of the Derivative:

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Alternate Limit Definition of a derivative
$f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$
$f^{\prime}(x)$ is " f prime of x ": This is the notation for the derivative function.

Derivative is the slope (steepness) of a curve at a single point
*The derivative function is a slope-finding formula for a curved graph, where the slope is of the curve is ever-changing.

General Limit Definition of the Derivative:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Alternate Limit Definition of a derivative:
$f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$

Example 1: (a) Find the general derivative of $f(x)=x^{2}$
(b) Write the equation of the tangent line to $f(x)$ at $x=1$ (point-slope form: $\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{1}}\right)$)

(c) Write the equation of the tangent line to $f(x)$ at $x=-5$

To Recap:

* $\boldsymbol{f}(\boldsymbol{x})$ is the height-finding formula (finds the y-value of graph at that point)
*Since $f(1)=1$, this tells us that when $\mathrm{x}=1$, the height of the graph has a y-value of 1
${ }^{*} \boldsymbol{f}^{\prime}(\boldsymbol{x})$ is the slope-finding formula for the $f(x)$ graph.
*Since $f^{\prime}(1)=2$, this tells us that when $\mathrm{x}=1$, the slope of the tangent line to $f(x)$ has a slope (steepness) of 2 .

General Limit Definition of the Derivative:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Alternate Limit Definition of a derivative:
$f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$

Example 2: (a) Find the general derivative of $f(x)=\sqrt{x}$
(b) Write the equation of the tangent line to $f(x)$ at $x=2$ (point-slope form: $\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$)

Example 3: Use the alternative derivative definition to find slope of $f(x)=\sqrt{x}$ at $\mathrm{x}=2$.

Differentiability: In order for a function to be differentiable (smooth curve) at a point a, then the graph must be continuous at that point, cannot contain a sharp turn \& cannot have a vertical tangent at the point.

Cusp / Corner

Discontinuous

Vertical Tangent

General Limit Definition of the Derivative:

Classwork Examples:

Find the derivative using limits

1. $f(x)=7-6 x$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

2. $y=5 x^{2}-x$
3. $y=\sqrt{5 x+2}$
4. $f(x)=\frac{1}{x-2}$
