2.3-2.4 Review WS \#3 - Power Rule, Particle Motion, Product \& Quotient Rule

No negative exponents in answer.

1. Find $\frac{d y}{d x}$ if $y=7 x^{3}(x-1)^{2}-\frac{3 x^{2}}{\sqrt{11}}+2 \pi x-5 e^{4}+2 \sqrt[5]{x^{4}}+\frac{2}{3 \sqrt{x^{7}}}$
2. Find $\frac{d y}{d x}$ if $y=\frac{4 x(\sqrt{x}+3 x-1)}{5\left(\sqrt{x^{9}}\right)}$
3. If $f(x)=\frac{x}{x^{2}-2}$ find $f^{\prime}(x)$ (simplify fully). Then write the equation of the line tangent to $f(x)$ at $x=1$ in point-slope form.
4. Particle moves along the x -axis so that its position at time t is given $x(t)=t^{3}-6 t^{2}-15 t+1$ where $x(t)$ is in meters per minute and $t \geq 0$. Use this to answer the questions below. Include units with your answers
a) Find the velocity and acceleration function
b) What is its velocity at $t=1$ seconds?
c) What is its acceleration at $\mathrm{t}=2$ seconds?
d) Find the average velocity of particle in [1, 2]
e) When is the particle at rest?
f) Find the average acceleration of particle in [1, 3]
g) When is the particle moving right? When does particle change directions? (Create Sign Line) Give justification.
h) What is displacement of particle from $t=1$ to $t=4$? Show work.
i) What is the total distance of particle from $t=3$ to $t=6$? Show work.
j) Is the speed increasing or decreasing at $\mathrm{t}=1$? Justify.
k) Is velocity increasing or decreasing at $\mathrm{t}=3$? Justify.
