Product Rule

$$h(x) = f \cdot g$$

$$h'(x) =$$

Find the derivative of each function.

1.
$$f(x) = 8x \sin x$$

									-
2.	g	7()	r)	=	2 <i>e</i>	x (V	\overline{x})

3.
$$h(x) = \left(\frac{1}{x} + 1\right)(2x^2 - 5)$$

The table below shows values of two differentiable functions f and g, as well as their derivatives.

x	f(x)	f'(x)	g(x)	g'(x)
2	4	-2	-1	2
-5	3	4	-2	5

4.
$$h(x) = 3f(x)g(x)$$

Find $h'(2)$.

5.
$$r(x) = \left(\frac{f(x)}{2} + 2\right) \left(3 - g(x)\right)$$

Find $r'(-5)$.

Find the derivative of each function.

1.
$$f(x) = (2x - 3) \sin x$$

$$2. \quad g(x) = 2x^3 e^x$$

3.
$$h(x) = 4\sqrt{x} \ln x$$

4.
$$f(x) = (4 - 5x) \cos x$$

5.
$$g(x) = 6 \ln x \sin x$$

6.
$$h(x) = 2e^x(x^2 + x)$$

Quotient Rule

$$h(x) = \frac{f}{g}$$

$$h'(x) =$$

Find the derivative of each function.

,			$2x^2$
1.	y	=	3x+1

$$2. \quad g(x) = \frac{3e^x}{2x}$$

3.
$$h(x) = \frac{\sin x}{2x^2 - 5}$$

4.
$$h(x) = \frac{3x+1}{2x^2}$$

The table below shows values of two differentiable functions f and g, as well as their derivatives.

х	f(x)	f'(x)	g(x)	g'(x)
2	4	-2	-1	2

5.
$$h(x) = \frac{f(x)}{3g(x)}$$

Find $h'(2)$.

6.
$$r(x) = -\frac{g(x)}{1 - f(x)}$$

Find $r'(2)$.

Find the derivative of each function. 1. $h(x) = \frac{4x-1}{3x+2}$

1.
$$h(x) = \frac{4x-1}{3x+2}$$

$$2. \quad g(x) = \frac{\sin x}{x}$$

3.
$$h(x) = \frac{x^3 + 2x^2 - x}{2x}$$

Product and Quotient Rule Practice Problems:

13.

x	d(x)	d'(x)	h(x)	h'(x)
1	-3	-2	4	3

- a. a(t) = d(x)h(x)Find a'(1).
- b. b(x) = -d(x)h(x)Find b'(1).
- c. $c(x) = \left(2 \frac{d(x)}{2}\right) \left(6 h(x)\right)$ Find c'(1).

Find the equation of the tangent line at the given x-value. 14. $f(x) = 8 \sin x \cos x$ at $x = \frac{\pi}{3}$

- 15. What is the instantaneous rate of change at x = 4 of the function $f(x) = \frac{x^2 1}{x 2}$?
 - (A) $-\frac{15}{2}$
- (B) $\frac{1}{4}$

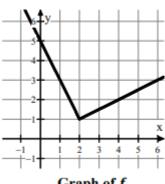
(C) $\frac{1}{2}$

(D) $\frac{15}{2}$

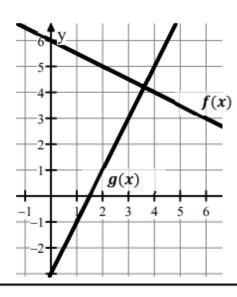
- 16. Let f and g be differentiable functions with the following properties:
 - I. f(x) < 0 for all x
 - II. g(5) = 2

If
$$h(x) = \frac{f(x)}{g(x)}$$
 and $h'(x) = \frac{f'(x)}{g(x)}$, then $g(x) =$

- (A) $\frac{1}{f'(x)}$
- (B) f(x) (C) -f(x)
- (D) 0
- (E) 2


- 17. The function f is defined by $f(x) = \frac{x}{x+4}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has a slope of $\frac{1}{9}$?
- (A) $\left(2, \frac{1}{3}\right)$ only

(B) $\left(\frac{1}{9}, \frac{1}{13}\right)$ only


(C) $\left(2, \frac{1}{3}\right)$ and $\left(-10, \frac{5}{3}\right)$

- (D) $\left(2, \frac{1}{3}\right)$ and (-2, -1)
- (E) There are no such points.

18. The graph of a function f is shown to the right. Let $g(x) = \frac{x^2 - 1}{f(x)}$. What is the value of g'(4)?

- Graph of f
- The graphs of f and g are shown to the right. If h(x) = 4f(x)g(x), then h'(1) =19.
 - (A) -22
 - (B) -4
 - (C) 0
 - (D) 4
 - (E) 46

