> THE 2015-2016 KENNESAW STATE UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION

Solutions

1. D Make a Venn diagram. Answer is 8 .

The eight were: Franklin Roosevelt, Dwight Eisenhower, John Kennedy, Jimmy Carter, Ronald Reagan, Bill Clinton, George W. Bush, Barack Obama.

2. C Clearly, $\mathrm{R}=0$. The number F I V E will be smallest if $F=1$. This means O must be 2,3 , or 4 , and 2 makes the I smallest. Thus, $I=4$. This leaves 3 and 5 for U
 and N (in either order), making $\mathrm{V}=8$. This leaves only 6, 7, or 9 for E. Therefore, the smallest value for the number F I V E is 1486.
3. E Let $n=$ number of boys in the club at the start. Then $(n)(n)+4(n+4)=301$ From which $n^{2}+4 n-285=0$. Factoring, $(n-15)(n+19)=0$, and $n=15$. Thus, there are $15+4=19$ boys now in the club.
4. C Method 1: The probability that the second number is the same as the first is $1 / 6$. Therefore, $5 / 6$ of the time, one die has a higher number than the other. By symmetry, the probability that the second die has the higher number is $(1 / 2)(5 / 6)=5 / 12$.

Method 2: There is a $1 / 6$ probability that the first die is a one, and in that case, a 5/6 probability that the second die is larger. Therefore, the probability that both occur is $(1 / 6)(5 / 6)$. Similarly, if the first die is a $2,3,4$, or 5 , the required probabilities are, respectively, (1/6)(4/6), (1/6)(3/6), (1/6)(2/6), (1/6)(1/6). Therefore, the probability that the second die is larger than the first is

$$
(1 / 6)(5 / 6)+(1 / 6)(4 / 6)+(1 / 6)(3 / 6)+(1 / 6)(2 / 6)+(1 / 6)(1 / 6)=15 / 36=5 / 12 .
$$

6. B Since $\underline{A} \underline{B}$ is prime, B must be $1,3,7$, or 9 . Since $\underline{B} \underline{C}$ is a square and there are no squares in the 70 's or 90 's, $B=1$ or 3 , and this means $C=6$. A quick check of the integers from 61 to 69 shows that $63=(9)(7)$ and $68=(4)(17)$ satisfy the third condition of the problem. Thus $\mathrm{A}=3$ or 8 . Remembering the first condition, the only 4 -digit numbers that work are 3163 and 8368. The required sum is 11,531
7. B Since $\mathrm{PD}=\mathrm{DC}, \triangle \mathrm{PDC}$ is isosceles and $\angle \mathrm{CPD} \cong \angle \mathrm{PCD}$. Since $\triangle \mathrm{DPB}$ is also isosceles, $\angle \mathrm{PDB} \cong \angle \mathrm{PBD}$.
Let $\mathrm{m} \angle \mathrm{PCD}=x$. Representing angle measures as shown in the diagram, $\mathrm{m} \angle \mathrm{BPD}=180-2(180-2 x)=4 x-180$.
Therefore, $\mathrm{m} \angle \mathrm{APB}=(180-x)+(4 x-180)=3 x$.
Hence, the required ratio is $1: 3$.

8. C It is easy enough to list all 10 possibilities: $\{0,1,2,8,9,10\},\{0,1,3,7,9,10\},\{0,1,4,6,9,10\}$ $\{0,2,3,7,8,10\},\{0,2,4,6,8,10\},\{0,3,4,6,7,10\},\{1,2,3,7,8,9\},\{1,2,4,6,8,9\},\{1,3,4,6,7,9\}$, and $\{2,3,4,6,7,8\}$.
9. A Let $3 k$ and k denote the number of students in each subgroup and let M denote the class mean. Then $4 k M-3 k(M-5)=k M+15 k$ represents the total points scored by the smaller subgroup of k students. Therefore, the mean of this group is

$$
\frac{k M+15 k}{k}=M+15
$$

10. E Let $S=$ the sum of the 28 consecutive odd integers. Then

$$
S=a+(a+2)+(a+4)+\ldots+(a+54)=\frac{28}{2}(2 a+54)=28(a+27)
$$

Since $28=7\left(2^{2}\right)$, this last expression will be a perfect cube if $(a+27)=2\left(7^{2}\right)=98$. Therefore, $a=71$.
11. C Let P, N, and Q represent the total number of pennies, nickels, and quarters, respectively. Then $P+5 N+25 Q=P+35 P+25 Q=607$. Therefore, $Q=\frac{607-36 P}{25}$. Since Q is a positive integer, the numerator of this fraction must be divisible by 25 and so must end in a 5 (it cannot end in 0 since 607 is odd and $36 P$ is even). This can only happen if P ends in 2 or 7 . Trying $P=2,7$, and 12, we find only 12 works. If $P \geq 17$, the numerator is negative. Therefore, $P=12, N=84$, and $Q=7$ and the total number of coins is 103 .
12. B Let $\mathrm{EF}=x$. Then $\mathrm{AE}=x \sin \theta$, and $\mathrm{DE}=\mathrm{AF}=x \cos \theta$. Therefore,

$$
x \sin \theta+x \cos \theta=x(\sin \theta+\cos \theta)=1
$$

Squaring both sides and solving for x^{2}, we obtain

$$
x^{2}=\frac{1}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}=\frac{1}{1+2 \sin \theta \cos \theta}=\frac{1}{1+\sin 2 \theta}
$$

13. B List all the three digit perfect squares: $100,121,144,169,196,225,256$, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961. Since each digit from 1 to 9 is to be represented exactly once, eliminate all those with duplicate digits or a 0 . We are left with

169, 196, 256, 289, 324, 361, 529, 576, 625, 729, 784, 841, 961.

256		'3	6	1
nate	5	2	9	
${ }^{3} 7$	8	4		

Only two of the numbers contain the digit 3, namely 324 and 361 . If we choose 324 as one of the "across" entries, then the other two cannot contain the digits 3, 2, and 4. This leaves only $169,196,576$, and 961 . But then it is impossible to have the digit 8 . Therefore we must choose 361 instead. Eliminating the other numbers which contain a 3, 6 , or 1 , we are left with $289,529,729$, and 784 . From these we must choose 529 and 784 because they are the only occurrences of 5 and 4 , respectively. Only the arrangement shown gives us a perfect square 324 for 1-down. Therefore, 2-down is 58 .
14. B Represent the solutions with $n, n+1$, and $n+2$. Then $a=-[n+(n+1)+(n+2)]$ and $a^{2}=(3 n+3)^{2}=9(n+1)^{2}$. Also, $b=n(n+1)+n(n+2)+(n+1)(n+2)=3 n^{2}+6 n+2$, so that $b+1=3 n^{2}+6 n+3=3(n+1)^{2}$. Therefore, $\frac{a^{2}}{b+1}=\frac{9(n+1)^{2}}{3(n+1)^{2}}=3$.
15. C Since the area of the triangle is 6 , the altitude to the $3^{\prime \prime}$ side must have length $4^{\prime \prime}$. In the diagram, $\triangle A B C$ illustrates the 3-4-5 right triangle that fulfills the requirement. To find the other triangle, extend $\overline{\mathrm{BA}}$ through point A to a point D that is $3^{\prime \prime}$ from A . Let C^{\prime} be the point on the parallel to $\overline{\mathrm{BA}}$ through point C that is $4^{\prime \prime}$ from D , as shown. $\Delta \mathrm{AC}^{\prime} \mathrm{B}$ has the required
 properties. Using the Pythagorean Theorem on $\triangle \mathrm{BC}^{\prime} \mathrm{D}, \mathrm{C}^{\prime} \mathrm{B}=\sqrt{52}$.
16. D The ratio of the geometric progression is $\frac{i+1}{i}=1-i$. Therefore, the third term is $(i+1)(1-i)=2$. The fourth term is $2(1-i)=2-2 i$, the fifth term is $(1-i)(2-2 i)=-4 i$, and the sixth term is $(1-i)(-4 i)=-4 i-4=-4(1+i)$. Therefore, the sixth term is -4 times the second term. Thus the tenth term is $16(1+i)$ and the fourteenth term is $-64(1+i)$. Multiplying this by $(1-i)$ gives -128 as the fifteenth term.
17. E Adding the given equations gives $a+b+a b=4030$. Adding one to both sides, we get $a+b+a b+1=(a+1)(b+1)=4031$. Since $4031=(29)(139)$, and both 29 and 139 are prime, $a=28$ and $b=138$ (or vice versa, since a and b are interchangeable in this situation). Therefore $a+b+c=28+138+c=2015$, and $c=1849$.
18. C The answer is c, b, a. Clearly, $k!>2^{k}$ for all integers $k>3$, which implies that $c>\mathrm{b}$. To see that $b>a$, we need to show that $2^{n}>(\sqrt{n})!$. Let $n=m^{2}$. Then we wish to show that $2^{m^{2}}>m!$. This is certainly true because $2^{m^{2}}=\left(2^{m}\right)^{m}$ and $2^{m}>m$ for $m>2$.
19. E Using the Law of Cosines on the triangle with sides $4,6,8$,
$8^{2}=4^{2}+6^{2}-2(4)(6) \cos \theta \Rightarrow \cos \theta=-\frac{1}{4}$
Since the consecutive angles of a parallelogram are supplementary, the other angle of the parallelogram
is $(180-\theta)^{\circ}$. Let d represent the length of the other diagonal
 Now using the Law of Cosines on the triangle with sides $4,6, d$,
$d^{2}=4^{2}+6^{2}-2(4)(6)[\cos (180-\theta)]=52-48(-\cos \theta)=52-48\left(\frac{1}{4}\right)=40$ and $d=\sqrt{40}$.
20. A $f(11)=11, f(14)=\frac{f(11)-1}{f(11)+1}=\frac{5}{6}, f(17)=\frac{f(14)-1}{f(14)+1}=-\frac{1}{11}$,
$f(20)=\frac{f(17)-1}{f(17)+1}=-\frac{6}{5}$ and $f(23)=\frac{f(20)-1}{f(20)+1}=11$.
Therefore, for all positive integers $n, f(11)=f(23)=f(35)=\ldots=f(11+12 n)$.
Since $f(2015)=f(11+12 \cdot 167)$, then $f(2015)=11$.
21. E Let $A=10 x+y$ and $B=10 y+x$, where $x=1,2,3 \ldots, 9$, and $y=0,1,2,3 \ldots, 9$. Then
$A^{2}-B^{2}=(10 x+y)^{2}-(10 y+x)^{2}=99 x^{2}-99 y^{2}=(9)(11)(x+y)(x-y)$
Since this must be a perfect square and $x-y<10,11$ must be a factor of $x+y$. But $x+y \leq 17$, so $x+y=11$. Therefore, $x-y$ is a perfect square. Hence, $x-y=1,4$, or 9 . Since $\mathrm{x}+\mathrm{y}$ and $\mathrm{x}-\mathrm{y}$ are either both even or both odd, the possible combinations are:
(i) $x+y=11$ and $x-y=1$ and (ii) $x+y=11$ and $x-y=9$.
(i) yields $x=6, y=5$ from which $A=65$. (ii) yields $x=10, y=1$ which is not acceptable. Therefore, $A=65$ and $A^{2}+B^{2}=65^{2}+56^{2}=7,361$.
22. C The measure of $\angle \mathrm{C}$ is $\frac{180(n-2)}{n}$. The measure of $\angle \mathrm{CBD}$ is $\frac{180-\frac{180(n-2)}{n}}{2}=\frac{180}{n}$. The measure of $\angle \mathrm{DBA}$ is $\frac{180(n-2)}{n}-\frac{180}{n}=\frac{180 n-540}{n}$
For the second polygon to be a regular polygon with m sides, $\frac{180(m-2)}{m}=\frac{180 n-540}{n}$. Simplifying this last equation gives $m=\frac{2}{3} n$. Since m is an integer, any value of $n>4$ which is a multiple of 3 will suffice. The only choice that is a multiple of 3 is 57 .
23. E Expand 101^{20} using the binomial theorem:

$$
(100+1)^{20}=1+(20)(100)+\binom{20}{2}\left(100^{2}\right)+\binom{20}{3}\left(100^{3}\right)+\binom{20}{4}\left(100^{4}\right)+\ldots
$$

The first 3 terms will not affect the ninth digit from the right since each has fewer than 8 digits. None of the omitted terms at the end will affect the ninth digit from right since each has more than 9 terminal zeros. The fourth and fifth terms are $1,140,000,000$ and $484,500,000,000$, so that the ninth digit from the right in their sum is $5+1=6$.
24. D $\log _{\sin x}(\tan x)=\log _{\tan x}(\sin x)=\frac{1}{\log _{\sin x}(\tan x)}$ using the change of base formula, where $\sin x>0$ and $\tan x>0$.

Therefore, $\left[\log _{\sin x}(\tan x)\right]^{2}=1$, which implies $\log _{\sin x}(\tan x)= \pm 1$.
$\log _{\sin x}(\tan x)=1 \Rightarrow \tan x=\sin x \Rightarrow \cos x=1$. However, this would make $\sin x=0$.
$\log _{\sin x}(\tan x)=-1 \Rightarrow \cos x=\sin ^{2} x=1-\cos ^{2} x$
Therefore, $\quad \cos ^{2} x+\cos x-1=0 \Rightarrow \cos x=\frac{-1 \pm \sqrt{5}}{2}$.
Since $\frac{-1-\sqrt{5}}{2}<-1$, the only possible value of $\cos x$ is $\frac{-1+\sqrt{5}}{2}$.
25. A Since ABC is a right triangle, $\mathrm{AC}=\mathrm{AC}^{\prime}=5$. Let D be the point of intersection of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}$, as shown in the diagram. Since BC is parallel to the y -axis, $\angle \mathrm{C} \cong \angle \mathrm{CAC}^{\prime}$. Therefore, $\angle \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{A} \cong \angle \mathrm{CA} \mathrm{C}^{\prime}$, so that $\triangle \mathrm{ADC}^{\prime}$ is isosceles. Thus, the altitude from D meets $\overline{\mathrm{AC}^{\prime}}$ at its midpoint, M , and $\mathrm{C}^{\prime} \mathrm{M}=2.5$.

Since $\triangle \mathrm{MDC}^{\prime}$ and $\triangle \mathrm{BAC}$ are both right triangles with $\angle \mathrm{C} \cong \angle \mathrm{C}^{\prime}$, the triangles are similar. Thus, $\frac{\mathrm{MC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{D}}{\mathrm{AC}}$. Substituting, $\frac{2.5}{4}=\frac{\mathrm{C}^{\prime} \mathrm{D}}{5}$, from which $\mathrm{C}^{\prime} \mathrm{D}=\frac{25}{8}$.
Hence, $\mathrm{DB}^{\prime}=4-\frac{25}{8}=\frac{7}{8}$, and the area of right triangle DAB^{\prime} is

$$
\frac{1}{2}\left(\mathrm{AB}^{\prime}\right)\left(\mathrm{B}^{\prime} \mathrm{D}\right)=\frac{1}{2}(3)\left(\frac{7}{8}\right)=\frac{21}{16}
$$

