AP Calculus AB 2020 Mock AP Exam \#1

1) (25 Minutes) 15 points

Let f be a twice-differentiable function. The table gives values of f and its derivative f^{\prime} at selected values of x.

$$
\text { Let } g(x)=\sin (3 x)-e^{\cos (2 x)}
$$

Let $h(x)=\int_{6}^{x} j(x) d x$

x	$f(x)$	$f^{\prime}(x)$
-1	4	-3
0	2	-1
1	3	1
2	-1	3
3	5	-2
4	-2	4
5	4	-2
6	3	2

graph of $j(x)$
a) Is there a value of c for $1<\mathrm{x}<5$ such that $f^{\prime \prime}(c)=-\frac{3}{4}$? Provide an explanation for your answer.
b) Let k be the function defined by $k(x)=f(j(x))$. Write an equation for the line tangent to the graph of k at $\mathrm{x}=2$
c) Find the slope of the tangent line to the graph of g at $x=\pi$
d) Find $h(4)$ and $h^{\prime}(4)$
e) On what interval is \boldsymbol{h} increasing and concave down? Justify your answer.
f) Find the absolute minimum, absolute max value of the h on the interval $0 \leq x \leq 6$. Justify your answers.
g) Evaluate $\int_{1}^{3} f^{\prime \prime}(2 x) d x$

2) (15 minutes) 9 points

Let $y=f(x)$ be a particular solution to the differential equation $\frac{d y}{d x}=\frac{1}{x y}$ with $f(1)=2$.
a) Find $\frac{d^{2} y}{d x^{2}}$ at the point $(1,2)$
b) Write an equation for the line tangent to the graph of f at $(1,2)$ and use it to approximate $f(1.1)$. Is the approximation for $f(1.1)$ greater or less than $f(1.1)$? Explain your reasoning.
c) Find the solution of the given differential equation that satisfies the initial condition $f(1)=2$
d) Let g be a differential function such that $g(x)=f^{-1}(x)$ for all x . What is the value of $\mathrm{g}^{\prime}(2)$?

