AP Calculus AB 2020 Mock AP Exam #2

1. (25 mins) 15 points

Two particles move along the x-axis. Table for twice-differentiable function Q(t) is given below. Selected values of Particle Q's position, velocity , and acceleration are provided.

t (minutes)	0	1	2	3	6	7	10
Q(t)	5	7	8	6	5	4	7
$Q'(t) = v_Q(t)$	2	3	0	-2	-1	0	4
$Q^{\prime\prime}(t) = a_Q(t)$	-1	-2	-3	-1	0	1	2

Particle P's velocity is given by the piecewise function P(t)

$$P(t) = \begin{cases} 3 + 2t - t^2 & for \ 0 \le t \le 3\\ 2te^{2-t} & for \ 3 < t \le 10 \end{cases}$$

- a) Find the average acceleration of particle Q in the interval $0 \le t \le 10$
- b) For Particle Q, explain the meaning of the definite integral $\int_0^{10} |v(t)| dt$. Approximate the value of $\int_0^{10} |v(t)| dt$ using Trapezoid approximation with 3 subintervals indicated in the table.
- c) For Particle Q, evaluate $\int_0^{10} a(t) dt$ and explain the meaning of this value.
- d) At t = 1, are the particles P and Q speeding up or slowing down? Show work for each to justify answer.

e) Find
$$\lim_{t \to 3^{-}} \frac{1 - e^{3 - t}}{2P(t)}$$

f) Let
$$h(t) = \frac{Q(t)}{3-t^2}$$
 Find $h'(1)$

g) Do Particles Q and P both change directions in the interval $0 \le t \le 4$? Show work to justify your answer

2) (15 minutes) 9 points

Let $f(x) = e^x - x$

- a) Find the critical value(s) of f. Classify each of these values as a relative minimum, relative maximum, or neither. Justify your conclusion
- b) Write the equation of the line tangent to the graph of f at the point where x = 1
- c) Given $\int_0^a f(x) dx = f'(a)$ find a.
- d) Suppose $y^2 f(x) = y 4$. Find $\frac{dy}{dx}$