AP Calculus AB 2020 Mock AP Exam \#2

1. (25 mins) 15 points

Two particles move along the x-axis. Table for twice-differentiable function $Q(t)$ is given below. Selected values of Particle Q's position, velocity, and acceleration are provided.

\mathbf{t} (minutes)	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1 0}$
$\mathbf{Q}(\mathrm{t})$	5	7	8	6	5	4	7
$\boldsymbol{Q}^{\prime}(\boldsymbol{t})=\boldsymbol{v}_{\boldsymbol{Q}}(\boldsymbol{t})$	2	3	0	-2	-1	0	4
$\boldsymbol{Q}^{\prime \prime}(\boldsymbol{t})=\boldsymbol{a}_{\boldsymbol{Q}}(\boldsymbol{t})$	-1	-2	-3	-1	0	1	2

Particle P's velocity is given by the piecewise function $\mathrm{P}(\mathrm{t})$
$\mathrm{P}(\mathrm{t})=\left\{\begin{array}{cc}3+2 t-t^{2} & \text { for } 0 \leq t \leq 3 \\ 2 t e^{2-t} & \text { for } 3<t \leq 10\end{array}\right.$
a) Find the average acceleration of particle Q in the interval $0 \leq t \leq 10$
b) For Particle Q, explain the meaning of the definite integral $\int_{0}^{10}|v(t)| d t$. Approximate the value of $\int_{0}^{10}|v(t)| d t$ using Trapezoid approximation with 3 subintervals indicated in the table.
c) For Particle Q , evaluate $\int_{0}^{10} a(t) d t$ and explain the meaning of this value.
d) At $\mathrm{t}=1$, are the particles P and Q speeding up or slowing down? Show work for each to justify answer.
e) Find $\lim _{t \rightarrow 3^{-}} \frac{1-e^{3-t}}{2 P(t)}$
f) Let $h(t)=\frac{Q(t)}{3-t^{2}} \quad$ Find $h^{\prime}(1)$
g) Do Particles Q and P both change directions in the interval $0 \leq t \leq 4$? Show work to justify your answer
2) (15 minutes) 9 points

Let $f(x)=e^{x}-x$
a) Find the critical value(s) of f. Classify each of these values as a relative minimum, relative maximum, or neither. Justify your conclusion
b) Write the equation of the line tangent to the graph of f at the point where $\mathrm{x}=1$
c) Given $\int_{0}^{a} f(x) d x=f^{\prime}(a) \quad$ find a.
d) Suppose $y^{2} f(x)=y-4$. Find $\frac{d y}{d x}$

