3.1-3.4 Help Session

1. Find all critical numbers for $h(x)=2 x^{5 / 3}-x^{2 / 3}+3$
2. Find the value(s) of the absolute extrema of the function $f(x)=x^{3}-\frac{9}{2} x^{2}-12 x+1$ on the interval $[-2,3]$.
$\max =$ \qquad $\min =$ \qquad Include theorem and condition.
3. If $f(x)=\frac{x^{2}}{8 x-15}$ on $[3,5]$, determine if Rolle's Theorem can be applied. If yes, find the value(s) of c defined on Rolle's Theorem.
4. If $g(x)=x^{3}-x^{2}-2 x$ on $[-1,1]$. Determine if the Mean Value Theorem can be applied. If yes, find the value(s) of c defined in the Mean Value Theorem.
7) Suppose $f(4)=12, f^{\prime}(4)=0$, and $f^{\prime \prime}(4)=-23$. If $f^{\prime}(x)$ is never equal to 0 or undefined for any other values of x, use the Second Derivative Test to state all relative extrema for $f(x)$.

7b) Given that $f(x)=\frac{1}{3} x^{3}+\frac{5}{2} x^{2}+6 x-1 \quad$ If $f^{\prime}(x)$ is never equal to 0 or undefined for any other values of x, use the Second Derivative Test to state all relative extrema for $f(x)$.
8. Sketch a labeled graph of a function, f, with the following characteristics:

$$
\begin{aligned}
& f(-6)=-6, f(-2)=-3, f(2)=5, \quad f(5)=-1 \\
& f^{\prime}(x)<0 \text { if } x<-6, x>2 \\
& f^{\prime}(x) \text { is continuous for all } x \\
& f^{\prime}(x)>0 \text { if }-6<x<2 \\
& f^{\prime \prime}(x)<0 \text { if }-2<x<5 \\
& f^{\prime \prime}(x)>0 \text { if } x<-2 \text { and } x>5
\end{aligned}
$$

9. Clearly and fully explain what it means in terms of the graph of a function for intervals where $\frac{d y}{d x}$ is negative and $\frac{d^{2} y}{d x^{2}}$ is negative at the same time. (sketch a portion of graph demonstrating these properties)
