Calculus Ch. 3.1-3.4 Concept Review Worksheet

I.		Extreme Value I heor	em: If a function i	on a closed interval, then it has both			
		an	and an		_ on the		
Ste	ps f	for EVT:					
1.	Fir	nd critical values by					
2.		nfirm that the critical va					
3.		nd critical values by setti					
		nd-absolute extrema by p					o f(x)
		ax-and Min values refer					, ,
		v					
н.		Mean Value Theorem					
If a	ı fur	nction f(x) is	on a, b	and		on a, b	
the the		nere must be at least one	point, c in a, b	where the slo	ope of the		is equal to
slo	pe o	of the	·				
M	VT ·	Formula:					
		to determine if function	ı is continuous and	l differentiab	le in the inte	erval (applicabl	e for MVT
	a.	To determine if whether	r function is not co	ontinuous on tl	ne closed inte	erval, look for	
		in tl	ne	of the fi	ınction		
	b.	To determine whether t	function is not diffe	rentiable(shar	p points, und	efined slope) on	the open
		interval, look for	in	the		of the derivative	function.
	c.						
111.		Rolle's Theorem					
If a	ı fur	nction f(x) is	on a, b	and		on a, b and _	
the	n th	nere must be at least one	point, c in a, b	where the slo	pe of the	is e	qual to

IV.	1.	First Derivative Test Find critical points by setting	,	
		Remember, critical points can come from the	and the	of
	2.	the f '(x) derivative function		
	3.	Put all critical points on a sign/number line		
	4.	Choose values in each interval and plug into the	to determine	
	5.	Because Statements		
		a. f(x) increasing in interval (a,b) b/c		
		b. f(x) decreasing in interval (a,b) b/c		
		c. Relative max at (a, f(a)) b/c		
		d. Relative min at (a, f(a)) b/c		
٧.		"Concavity Test"		
	1.	Find critical points by setting		
	2.	Remember, critical points can come from the	and the	of
		the function		
	3.	Put all critical points on a sign/number line		
	4.	Choose values in each interval and plug into the	to determine	
	5.	Because Statements		
		a. Graph is Concave up in interval (a,b) b/c		
		b. Concave down in interval (a,b) b/c		
		c. Point of Inflection at (a, f(a)) b/c		
VI.		2 nd Derivative Test	1NOT C	
		*The 2 nd derivative test is a test for		
	2.	*The 2 nd derivative test achieves the same as the 1 st derivat	ive test.	
	St	eps:		
		a. Find critical points from		
	•	b. Take critical points and plug into the		
		c. If $f'(a) = 0$ and $f''(a) > 0$, then there is a relative		
•		d. If $f'(b) = 0$ and $f''(b) < 0$, then there is a relative		
		a. If $f'(c) = 0$ and $f''(c) = 0$ then		

l.	Ex	treme Value T	heorem:	If a function is	Continuous	on a cl	osed interval.	then it has both
	an	absolute n	1ax ar	nd an absolute	min	on the	closed	interval
Steps f	for E	VT:						

- Find-absolute extrema by plugging in critical values and endpoints
- 5. Max-and Min values refer to the <u>4</u> values

II. Mean Value Theorem

If a function f(x) is <u>continuous</u> on a, b and <u>differentiable</u> on (a, b) then there must be at least one point, c in (a, b) where the slope of the <u>fangent</u> is equal to

slope of the <u>Secant line</u>

Steps to determine if function is continuous and differentiable in the interval (applicable for MVT And Rolle's)

- a. To determine if whether function is not continuous on the closed interval, look for in the denominator of the function f(x)
- b. To determine whether function is not differentiable(sharp points, undefined slope) on the open interval, look for Critical Values in the dono minator of the derivative function.

III. Rolle's Theorem

If a function f(x) is <u>Continuous</u> on [a,b] and <u>differentiable</u> on [a,b] and $\underline{f(a)} = f(b)$ then there must be at least one point, c in (a, b) where the slope of the <u>fangent</u> is equal to O

IV.	First Derivative Test Find critical points by setting $f(x) = 0$
1.	Remember, critical points can come from the <u>Numerator</u> and the <u>denominator</u> of
2.	the f '(x) derivative function
2	
3.	Put all critical points on a sign/number line Choose values in each interval and plug into the to determine f(x)
4.	,
5.	Because Statements a. $f(x)$ increasing in interval (a,b) b/c $f'(x) > 0$
	b. $f(x)$ decreasing in interval (a,b) b/c $f(x)$
	a Relative may at (a f(a)) h/c f'(x) changer from + to -
	d. Relative min at $(a, f(a))$ b/c $f(x)$ changes from $ +$ $+$
	d. Relative him at (a, i(a)) 6/6
V.	"Concavity Test"
1.	Find suitised naints by setting $+(X)=0$
2	Remember, critical points can come from the <u>Numerator</u> and the <u>denominator</u> of
	the $f''(x)$ function
3.	Put all critical points on a sign/number line
4.	Choose values in each interval and plug into the
5.	Recause Statements
	a. Graph is Concave up in interval (a,b) b/c $f''(x) > 0$
	b. Concave down in interval (a,b) b/c (X) \leq 0
	c. Point of Inflection at (a, f(a)) b/c $f''(x)$ changes Sign
VI.	2 nd Derivative Test *The 2 nd derivative test is a test for relative extremand NOT for PO.I.
2.	*The 2 nd derivative test achieves the same as the 1 st derivative test.
St	eps:
	eps: a. Find critical points from $f(x)$ set $f(x)=0$ (numbrator of $f(x)=0$) b. Take critical points and plug into the $f''(x)$ function 2. If $f'(x)=0$ and $f''(x)>0$, then there is a relative minimum at $x=a$
OCANE.	h. Take critical points and plug into the $f''(x)$ function
up	Fig. 1 and f''(a) = 0 and f''(a) > 0, then there is a relative $\underline{\textit{minimum}}$ at x = a
(relative min)	d. If $f'(b) = 0$ and $f''(b) < 0$, then there is a relative Maximum at $x = b$
	d. If $f'(b) = 0$ and $f''(b) < 0$, then there is a relative <u>maximum</u> at $x = b$ e. If $f'(c) = 0$ and $f''(c) = 0$, then <u>And derivative test is inconclusive</u>
	down (relative max)

I. Extreme Value Theorem

- 1. Check continuity
- 2. Check f(x) is a closed function
- 3. Find f'(x).
 - a. Find Critical Points:
 - b. Set numerator and denominator of f'(x) = 0
- 4. Plug critical points and endpoints into f(x) to find absolute max/min

* max and min values refer to y-values

III. Rolle's Theorem

- 1. Check continuity on closed interval [a,b]
- 2. Check Differentiability on open interval (a, b)
- Check endpoints. Does f(a) = f(b)? If not, then Rolle's fails
- 4. Set f'(x) = 0 and solve for x
- 5. Make sure the x value(s) lies in the open interval (a, b)

IV. 1st Derivative Test (Finds inc/dec and relative-max/min)

- 1. Find f'(x), set equal to zero
 - a. Find critical points from BOTH numerator and denominator
- 2. Put all critical points on sign line
- 3. Test intervals
 - a. Plug values into f'(x) to determine slope
 - i. Positive (+) means increasing slope
 - ii. Negative(-) means decreasing slope
- 4. Write Because Statements
 - a. f(x) increasing in interval (a,b) b/c f'(x) > 0
 - b. f(x) decreasing in interval (a,b) b/c f'(x) < 0
 - c. Relative max at (a, f(a)) b/c f '(x) changes from + to -
 - d. Relative min at (a, f(a)) b/c f '(x) changes from to +

II. Mean Value Theorem

- 1. Check continuity on closed interval [a,b]
 - a. Does f(x) have variables in the denominator? (V.A. or holes)
 - b. If so, then look to see if the x-value lies in the closed interval [a, b]
 - c. If the x lies between the interval, then function is not continuous on the interval, MVT fails
- 2. Check Differentiability on open interval (a, b)
 - a. Does f'(x) have variables in the denominator? (sharp points, slope undefined)
 - b. If so, then look to see if the x-value lies in the open interval

 (a,b)
 - c. If the x lies between the interval, then function is not differentiable on the interval, MVT fails
- 3. Find m_{avg}. (This is the slope between your endpoints)
- 4. Set $f'(x) = m_{avg}$ and solve for x
- 5. Make sure the x value(s) lies in the open interval (a, b)

V. Finding Intervals of Concave Up/Down and Points of Inflection (POI) / "Concavity Test"

- 1. Find f "(x), set equal to zero
 - a. Find critical points from BOTH numerator and denominator
- 2. Put all critical points on sign line
- 3. Test intervals
 - a. Plug values into f "(x) to determine concavity
 - i. Positive (+) means concave up
 - ii. Negative() means concave down
- 4. Write Because Statements
 - a. Concave up in interval (a,b) b/c f''(x) > 0
 - b. Concave down in interval (a,b) b/c f''(x) < 0
 - c. Point of Inflection at (a, f(a)) b/c f "(x) changes signs

VI. 2nd Derivative Test (Finding relative max/min)

- 1. Find f'(x), set equal to zero
 - a. Find critical points. (These are candidates for relative max/min)
- 2. Find f ''(x)
- 3. Plug the critical points (from step #1) into f "(x).
 - a. If result is positive value, then f''(x) > 0, concave up, and therefore relative minimum exists at x-value
 - Relative Minimum at x = a because f'(a) = 0 and f''(a) > 0
 - b. If result is negative value, then f'(x) < 0, concave down, and therefore relative maximum exists at x-value
 - Relative Maximum at x = b because f'(b) = 0 and f''(b) < 0
 - c. If result is zero, then since f'(x) = 0, then this test is inconclusive. We cannot determine whether relative extrema exists. (Use First Derivative Test)

VII. Absolute Extrema on an Open Interval

- 1. Find f '(x)
- 2. Find critical number (only 1)
- 3. Make sign line
- 4. Write because statements

- 5. An Absolute Min occurs at (a, f(a)) b/c f'(x) < 0 for all x < a and f'(x) > 0 for all x > a
- 6. An Absolute Max occurs at (a, f(a)) b/c f'(x) > 0 for all x < a and f'(x) < 0 for all x > a