Calculus Ch. 3.1 Notes: Extrema and Critical Points

Extrema : maximums and minimums ‘ Closed interval
Relative (local)

<+ maximum AND

absolute

maximum

Relative (local) absolute

maximum

—_— maximum only

\ Relative (local)

minimom and
absolute minimum
Relative (local)
minimum
Open Interval
Relative (local) extrema: any “hills and valleys” of graph
No absolute
Absolute (global) extrema: highest or lowest points on the entire graph maximum
*holes and +oo can not be considered as absolute extrema. \
Y

Relative (local)
minimum and
absolute minimum

(EvT)

Extreme Vilue Theorem: Ifa function is continuous on a closed interval, then jt has both an

(absolute) minimum and an (absolute) maximum on that interval.

Fermat’s Theorem: Ifa function is continuous on a closed interval, then the absolute extreme will

either be atthe a) critical numbers or b) at an endpoint.

Critical humbers ( valués) : x-values in the domain of a function where the derivative of a function is

either 0 or undefined.

*Relative extrema ONLY occur at critical numbers, but not all critical nui“nbers are where relative

extrema odécur.

*Maximum and minimum values refer to the y-values of the point.
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1. Find critical points '
a. Setf(x) =0
b. Find where £'(x) is undefined (Set denominator of £(x)=10)

2. Plug all eritical points and endpoints into f(x)

3. Compare y-values to determine absolute maximum(s) and absolute minimum(s)

Find all critical numbers for each. What are the values of the absolute extrema?

Example1: fx)= 3x* — 4% on [0, 2]

Bxemple2:  f(x)=(x~1)°  on[1,0]

* Example 3: f(x)=~;£x\/3—-x on [0, 3]



Chapter 3 Curve Sketchihg 3.1 EVT Classwork Problems

Fi!’ldlﬁg Extrema on a Closed Interval In Exercises

\_ ) 17-36, find the absolute extrema of the function on the closed

interval.

19, g(x) = 2«2 — 8x, [0, 6]

2 ) = x* = 342 [~1,]

23, y = 3x%% — 2, [~1, 1]

24, g(x) = ¥x, [~8,8]

N
l\\/ ,‘

26, F(x) = [-2,2]

x2+1‘

Vs
—

' t
28. h(t) = P [—1, 6]
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a.hapter 3 Curve Sketchmg 3.2 MVT and Rolle S Classwork Problems

; H the Mean V’alue Thearem cannot be apphed prlam wlw not.

a?’” Fo = +2x, [~1,1]

%40 F0) = — 5, 10,7]
]

ffl =2, (01 2. 50 =

1,2]

35. Mean Value Thearem Consider the graph of the function
f) = —* + 5 (see figire on next page).
(a) Find the equation of the seaant ]ine joimng the pmnts
(~1, 4}and 1)

-(b) Use the Mean Value Thaamm tcr determine a pmnt cin the,'
interval {(— 1, 2) such that the tangsnt line at ¢ is parailel to
the secant 1111& '

Figure fot 38
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Calculus Ch. 3.2 Notes: Mean Value Theorem (MVT) and Rolle’s Theorem

Mean Value Theorem (MVT): If a function, f(x), is continuous on [a, b] and differentiable on (a, b),
then there must be at least one point, ¢ in (a, b) where the slope of the tangent (derivative) is equal to the

f(®)-f(a)
b—-a -

slope of the secant. /' (c) =

*In other words, set the derivative equal to the slope between endpoints (Mayg.) *

MVT-Steps:

1. Check Continuity (no breaks between endpoints)
a. Does 1{(x) have variables in the denominator? ( V.A. or holes)
b. If'so, thenlook to see if the x-value lies in the closed interval [a, b]
c. Ifthe x lies'between the interval, then function is not continuous on the interval, MVT fails

2.~ Check Differentiability (smooth curve between endpoints)
a. Does f(x) have variables in the denominator? ( sharp points, élope undefined)
- b. Ifyes, then look to see if the x-value lies in the open interval (a,b)
c. If the x lies between the interval, then function is not differentiable on the interval, MVT fails

**Note, all polynomials are continuous and differentiable everywhere**

3. Find maye. (This is the slope between your endpomts slope of secant line)
4. Setf(x)= mavg and solve for x

Example 1: Determme if the mean value theorem can be applied to f{x) = 2x> +x+4 onthe
interval [-2, 1].- If so, find the value of ¢ based on the theorem.



E.Rdlle's Theorem: If a function, f(x) is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then

there must be at least one point on the function where the slope of the tangent (derivative) is 0.

*In other words, if the endpoints have the same y-values, then we can guarantee a relative maximum or
relative minimum somewhere between the endpoints

*Rolle’s Theorem is just a specific case of the Mean Value T. heorem

Rolle’s Theorem Steps:

1. Check Continuity:(no_ breaks between-endpoints) ‘
2. Check Differentiability (smooth curve between endpoints)

**Note, all polynomials afe continuous and differentiable everywhere**

3. Test endpoints. Does f(a.) = f(b)? If not ,then Rolle’s fails / does not apply
4. If yes, then set f(x) =0 and solve for x

{

Example 2: Deterrnine if Rolle's theorem can be applied to f(x) = x2 —3x + 2 on the interval [1, 2]. If
so, find the value of ¢ such that f'(c) = 0.

Example3: Determine if Rolle’s theorem can be applied for £(x) =3 — [x — 3] on [0, 6]
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Chabier' 3 Curve Sketching 3.2 Rolle’s Classwork Problems

. Using Rolle’s Theorem In Txercises 9-22, determine

e w whether Rolle’s Theorem can be applied to f on the closed

interval [a, 5. If Rolle's Theorem con be applied, find a1l values

of ¢ in the open interval (e, b) such that f/(c) = 0. If Rolle’s
Theorem cannot be applied, explain why not,

9. f(x) = —x% +3x, [0,3] 10, f(x) ﬂ -8+ 5, [2,6]

2x

| 3
13, fO) = x%8 — 1, [~8,8] 15, £(x) = = X

+‘

=3 14
= [-13]
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Calculus Ch. 3.3 Notes: First Derivative Test

What does the derivative represent?

When the function is increasing, what is common about the derivatives at those points? -

-When the function is decreasing, what is common about the derivatives.at those points?

When f'(x) >0,
When f'(x) <0,

When f'(x) =0,

First Derivative Test Steps (Finds inc/dec and relative max/min)

1. Find f’(x), set equal to zero
a. .Find critical points from BOTH numerator and denominator

b. Remember;-critical points-also exist-where-function isnot d1fferent1able (sha;rp point)

2. - Put all critical points on sign hna
3. Test intervals
a. Plug values into f ’(x) to determine slope
i. Positive (+) means increasing slope
ii. Negative( —) means decreasing slope

4. _Write Because.Statements

a. f(x) increasing in interval (a,b) b/c £°(x)>0
b. f{x) decreasing ih interval (a,b) b/c £°(x)<0
¢. Relative max at ( a, f(a) ) b/c f ‘() changes from + to —
d. Relative min at ( a, f(a) ) b/c f ‘(x) changes from - to -+

Example 1: Determine the intervals at which the function f{x) = %x3 + ;-xz = 6x ~ 3 is increasing and

decreasing.. Locate the relative extrema.



3. Test intervals

_ Kirst Derivative Test Steps (Finds inc/dec and relative max/min).. | a  Plugvalues into £’(x) to determine slope

i, Positive (+) means increasing slope
ii. Negative( —) means decreasing slope
1. Find £’(x), set equal to zero :

a. Find critical poirts from BOTH numerator and denorninator 4. Write Because Statements
b. Remember, critical points also exist where function is not f(%) increasing in interval (a,b) b/e £'(x) >0
differentiable (sharp point) f(x) decreasing in interval (a,b) ble £°(x) <0
2. Putall critical points on sign line Relative max at ( a, £(a) ) b/c £ ‘(x) changes from + to —
Relative min at ( &, f(a) ) b/c f ‘(x) changes from —to +

o op

Sx+2, .- . . .
3 is increasing and decreasing: Locate

Example 2: Determine the intervals at which the function f(x) =

the relatiVe extrema.

Example 3: Make a first derivative sign line for the following.graph of f'(x): T /
) |




AB Calculus Ch. 3.3 Select HW. Problems

Applying the First Derivative Test - In Exercises 17-40,
(\) -(#) find the eritical nombers of f (it any), (h) find the open
.../ interval(s) on which the function is increasing or decrensing,
(<) apply the First Dertvative Test to identlfy il velative sxtrema,
and {d) vse a graphing wility to confirm your resulis,

1 flx) = 202 4 4+ 3

21, f(x) = 20 + 32 — 12x

Sx

™

27, Flx) = ai‘fs +1

P il
25, flx) = 5

29, #(3) = (x + 202

O

307 =2 +1




AB Calculus Ch. 3.4 Select HW Problems

_ Finding,Points of Inflection . In Exercises 15-30, find the
O puints of inflection and discuss the concavity of the graph of the

Function.

15, () = 52 = 6% + 12

17 flx) = g% 4 24°

P Y
Q.wﬂ) s — 4)

21, fl) = xfx + 3

.. 4
B [0 =T




Calculus Ch. 3.4 Notes: “Concavity Test” and the 2™ Derjvative Test

_/

Are both of these functions increasing? What do we know about their derivatives?

1) Iff"(x)is> 0, then £'(x) is increasing and f(x) is concave up.
2) Iff"(x)is <0, then f'(x) is decreasing and f(x) is concave down.
3) APoint of Inflection (POI) occurs whenever f "(x) changes sign. (f(x) changes concavity)

ZConcavity Test” Steps (Finding interval Concave Up/Down and POI)

1. Find f "(x), set equal to zero
a. Find critical points from BOTH numerator a_nc_l denominator
Put all critical points on sign line

N

(83

Testintervals
a. Plug values into f ”(x) to determine concavity
i." Positive (+)means concave up
ii. Negative(~ ) means concave down
4. Write Because Statements -
a. Concave up in interval (a,b) b/c £>°(x)>0
b. Concave down in interval (a,b) ble £*’(x) <0
5. Point of Inflection at ( a, f(a) ) b/c f "(x) changes signs

*Note: POI may exist on graph where f ”(x) does not exist (sharp point). POI exists as long as graph is continuous and
f "(x) changes concavity (change of signs) : :

Example 1: Find the points of inflection if f(x) = —2x5 + -z;x?’
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The 2™ Derivative Test

*The 2™ derivative test is a test for relative exirema (max/min) and NOT for Pomt of Inﬂecuon*

*The 2 derivative test achieves the same as the 1* derivative test.

1) If you plug a critical number from £(x) into f *(x) and if f"(x)>0, then that is the x-value of the relative minimum
2) If you plug a critical number from £(x) into f "(x) and if f"(x) <0, then that is the x-value of the relative maximum

3) If you plug a critical number from £(x) into f”(x) and if f "(x) =0, then the test is inconclusive. We need the first
derivafive test to determine if critical number is a relative extrema.

2 Derivative Test Steps (Test for Relative Extrema, NOT Point of Inflection)

1. Find f’(x) set equal to zero
* a Find critical points. Set numerator and denominator of f (%) = 0. (These are candidates for relative max/min)
2. Find f"(x)
3. Plug the critical points (from step #1) into f " (x).
a. Ifresult is positive value, then £’(x) > 0, concave up, and therefore relative minimum exists at x-value
b.  Ifresult is negative value, then f’(x) <0, concave down, and therefore relative maximum exists at x-value
c. fresultis zero, then since £°(x) = 0, then this test is inconclusive. We cannot determme whether relative extrema
exists. (Use First Derivative Test)

Example 2: Find the relative extrema of f(x) X —4x* — 3x
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