1) Find the critical points of $f(x)=x^{8 / 5}+x^{3 / 5}$
2) Find the value(s) of the absolute extrema of the function $f(x)=2 x^{3}-3 \mathrm{x}^{2}-12 \mathrm{x}+1$ on the interval $[-2,3]$. State theorem and conditions
3) If $f(x)=\frac{x^{2}-2 x-3}{x+2}$ on $[-1,3]$, determine if Rolle's Theorem can be applied. If yes, find the value(s) of c defined on Rolle's Theorem. State conditions and show steps.
4) If $g(x)=x^{3}-\mathrm{x}-1$ on $[-1,2]$, determine if the Mean Value Theorem can be applied. If yes, find the value(s) of c defined in the Mean Value Theorem. State conditions and show steps.
5) If $f(x)=2 x^{3}+3 x^{2}-12 x$ find the following (where appropriate): Intervals where $\mathrm{f}(\mathrm{x})$ is increasing, decreasing, relative maximum points, and relative minimums points. Justify your answer(s)
6) If $f(x)=x^{5}-5 x^{4}+3 x+7 \quad$ Find the intervals where $\mathrm{f}(\mathrm{x})$ is concave up and concave down, and find all points of inflection. (Justify your answers)
7) Sketch a labeled graph of a function, f, with the following characteristics:
$\mathrm{f}(-4)=5, \mathrm{f}(-1)=-2, \mathrm{f}(0)=0, \mathrm{f}(2)=4$
$f^{\prime}(\mathrm{x})<0$ for $\mathrm{x}<-1$ and $\mathrm{x}>2$
$\mathrm{f}^{\prime}(-1)=0, \mathrm{f}^{\prime}(2)=0$
f^{\prime} (x) >0 for $-1<\mathrm{x}<2$
$\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ for $\mathrm{x}<-4, \mathrm{x}>0$
$f^{\prime \prime}(x)>0$ for $-4<x<0$
