4.1a Notes Antiderivative Formulas

If
$$f(x) = x^2$$
, what is $f'(x)$?

Using Power Rule, $\frac{d}{dx}u^n = n * u^{n-1}$, we know that f'(x) = 2x

To put the steps for Derivatives Power rule into words:

- 1) Bring exponent down in front of variable and
- 2) _____exponent by 1

If f'(x) = 2x, what steps can we take to find f(x)?

We can "undo" the previous derivative steps:

- 1) _____1 to the exponent
- 2) ______ by the new exponent

Power Rule for Integration:

$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$

Antidifferentiation Notation:

NOTATION: $\int 2x dx = x^2 + C4$ identifies the independent variable constant of integration

Consider the below functions:

$$f(x) = x^{2} + 5$$

$$f(x) = x^{2} - 13$$

$$f(x) = x^{2} + 126$$

Since we can add a constant to any of these functions and still result in the same derivative, the antiderivative of a function will be in the form of f(x) + C to show the family of functions that share the same derivative.

The process of integration is called antidifferentiation or taking the indefinite integral.

The indefinite integral results in a function.

The definite integral results in a number.

Integration Formulas

1.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$

$$2. \int a \, dx = ax + C$$

3.
$$\int \frac{1}{u} du = \ln |u| + C$$

Important: The derivative and integral are Inverse operations of each other.

$$4) \int f'(x)dx = f(x) + C$$

$$5)\frac{d}{dx}[\int f(x) \ dx] = f(x)$$

Recall Power Rule-Conditions:

2)All variables in numerator _3) Expand expression fully 1) Rewrite as rational exponents

Class Examples:

1.
$$\int 7x \, dx =$$

$$2. \int 7x^3 dx =$$

$$3. \int 2x + 3x^2 - 5x^4 dx =$$

4.
$$\int (3x-1)^{-2} dx =$$

$$5. \int \frac{x+1}{\sqrt{x}} dx = 6. \int \frac{3}{y\sqrt{y}} dy =$$

$$6. \int \frac{3}{y\sqrt{y}} dy =$$

$$7. \int \frac{3\sqrt{x}(1-x)^2}{\sqrt[3]{x}} dx =$$

Review Derivative Trig Rules:

1)
$$\frac{d}{dx}\sin u =$$

2)
$$\frac{d}{dx} \tan u =$$

5)
$$\frac{d}{dx}$$
 $\sec u =$

3)
$$\frac{d}{dx}\cos u =$$

4)
$$\frac{d}{dx}\cot u =$$

6)
$$\frac{d}{dx} \csc u =$$

Integral Trig Rules:

1)
$$\int \sin u \, du =$$
3)
$$\int -\sec^2 u \, du =$$

5)
$$\int \sec u \tan u \, du =$$

$$2) \int \cos u \, du =$$

4)
$$\int \csc^2 u \ du =$$

6)
$$\int \csc u \cot u \, du =$$

Classwork Examples:

$$1. \int \frac{\tan x}{\cos x} - \sin x \ dx$$

$$2. \int \frac{\sin x}{\cos^2 x} dx$$

$$3. \int (1 + \cot^2 x) dx$$

<u>Differential Equations:</u> These are simply equations that involve derivatives.

Steps for solving Differential equations:

- 1. Rewrite y' as $\frac{dy}{dx}$
- 2. Separate variables on either side of equation
- 3. Take the integral of both sides

Solve for C if finding a specific solution/equation to the differential equation

Example 3: Suppose y' = 2. Solve for y.

Example 4: Solve this <u>General</u> Differential equation. $\frac{dy}{dx} = x^3$

Example 5: Solve this <u>Specific</u> differential equation: y' = 3x - 4 and the point (4, 10) is on the graph of y.

4.16 (continued) More difficultion examples

[Ex.6] Suppose f'(x)=6x+4, f(0)=3, and f(1)=5. Find f(x).

To help distinguish the constants of integration, use "to" for the first content and use "+k" for the second constant of integration.

[Ex.7] Given g(x) = 12x+6 and g(0)=4 and g(1)=-2 Find g(x).

4.1, 4.2, 4.6 Formula Sheet:

Summation Formulas:

1)
$$\sum_{i=1}^{n} 1 = n$$

2)
$$\sum_{i=1}^{n} i$$

$$= \frac{n(n+1)}{2}$$

$$\begin{vmatrix} \frac{tutas}{s} \\ 3 & \sum_{i=1}^{n} i^{2} \\ = \frac{n(n+1)(2n+1)}{6} \end{vmatrix}$$

4)
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

$$\int \int \sum_{i=1}^{n} c \boldsymbol{a_i} = c \sum_{i=1}^{n} \boldsymbol{a_i}$$

Area using Limit Definition

$$\lim_{n\to\infty}\sum_{i=1}^{n}(width)*f(left\ endpoint+width*i)$$

width =
$$\frac{b-a}{n}$$

Trapezoid Area:

$$Area = \frac{1}{2}w(h_1 + h_2)$$

4-2, 4-6 Riemann Sums WS: Using Tables of Values

1) Selected values of a function, f, are given in the table below:

Х	0	5	8	9	12	18	20
f(x)	4	2	3	7	3	6	10

a) Give the middle approximation with 3 subintervals for f on the interval [0, 20]

 x
 0
 5
 8
 9
 12
 18
 20

 f(x)
 4
 2
 3
 7
 3
 6
 10

b) Use right-handed rectangles to approximate the area with 3 subintervals for f on the interval [0, 20]

Х	0	5	8	9	12 ·	18	20
f(x)	4	2	3	7	3	6	10

c) Use left-handed rectangles to approximate the area with 3 subintervals for f on the interval [0, 9]

х	0	5	8	9	12	18	20
f(x)	4	2	3	7	3	6	10

d) Use trapezoids to approximate the area with 2 subintervals for f on the interval [0, 20]

2) Selected values of a function, f, are given in the table below:

	×2000000000000000000000000000000000000		-	-						***************************************
	• •v-	1	2	7	10	12	12	16	17	20 1
	A .	. *	(ب	/	. 10	120	44	7.4	*1.	200
-	ME \	amalinakitahimininiii:		***************************************	<i>^</i>	**************************************	^	A	P	*
	1(X)	3	0		9	15	2	4)	0 1
	I(X)	J.	O	Ţ)	13	L.	**	J	U

a) Give the middle approximation with 2 subintervals for f on the interval [1, 20]

	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	besite was not assessed as the responsation of							h
	X	1	3	7	10	12	13	16	17	20
- 1	~~	***************************************		L	. ** **			12 12	***************************************	
	f(x)	3	6	1	9	15	2 .	4	5	6

b) Use right-handed rectangles to approximate the area with 3 subintervals for f on the interval [3, 17]

	~~~	*************	*************							<del> </del>
	x	1	3	7	10	12	13	16	17	20
- 1		***	***		,	AT NOT	11 -44	4-1 -44		
- 1	f(v)	3	6	1	a	15	ウ・!	4	5	6
- [	パツ	-J	V	J.	2	J. 5.7		"T		L

c) Use left-handed rectangles to approximate the area with 4 subintervals for f on the interval [1, 12]

	·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	emmente de la company de la co	<del> </del>	***************************************	annantainid that the similar	www.www.www.cian		<del>(************************************</del>	
ı	*•	1	1 2	7	10	12	13	16	17	20 1
ı	Α.	*	ليو	/	, 10	14	1	10	.1. 1	_ <i>**</i> *
•		Amos tarricos sobio de concercio con econocio de contra	-	*************************	whateners was a second and a second a second and a second a second and		***************************************		******************************	
- 1	67. X	^		i -4		12"	. a.	A	L. C.	
- 1	#/*V1		1 h			1.79	7.	44	~,	: n :
- 1	*(*)	٠,٠			340	1.4	بد		₩.*	
	versioners annihment annimination and									

d) Use trapezoids to approximate the area with 3 subintervals for f on the interval [3, 17]

### AP Calculus AB 4-1,4-2, 4-6 Quiz Review #1

Calculators permitted.

1. Find the sum:

$$\sum_{i=2}^{4} [(i+1)^2 - (2-i)^3]$$

- 2. Use Sigma notation to write the sum:  $\frac{2}{\sqrt[3]{5-2}} + \frac{4}{\sqrt[3]{5-4}} + \frac{6}{\sqrt[3]{5-6}} + \frac{8}{\sqrt[3]{5-8}}$
- 3. Use 3 middle rectangles to approximate the area of the region bounded by  $f(x) = x^2 + 3$ , the x-axis, x = 1, and x = 6.

4. Use the table of values on the right to estimate the below:

х	0	4	6	7	10
f(x)	5	3	2	3	5

- a. Use 3 left-handed rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [0, 7]
- b. Use 2 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [0, 10]

- c. Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [4, 10]
- I. Use 3 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [0, 7]

5. Given the region bounded by  $g(x) = 6 - x^2$ , the x-axis, x = -1, and x = 2. Use the limit definition to find the exact area of the region.

Find the most general antiderivative of h(x). (Find  $\int h(x)dx$ )

6. 
$$h(x) = 5x^4 - \pi + \frac{1}{2\sqrt{x}} + \frac{1}{3x^3}$$

7. 
$$h(x) = -2\cos x + 5\sin x - 5\csc x \cot x$$

8. Find the most general expression of f(x) if  $f''(x) = 4x^3 - 5x^2 + 3x - 6$ .

9. Find the specific expression of f(x) if  $f(x) = \int g(x)dx$ ,  $g(x) = 3x^2 - 4x$ , and f(-1) = 2

#### **AP Calculus AB 4-1, 4-2, 4-6 Quiz Review WS #2**

Calculators permitted.

1. Find the sum:

Find the sum: 
$$\sum_{i=2}^{4} [(i+1)^2 + 3(2i-1)^3]$$

- 2. Use Sigma notation to write the sum:  $\frac{5-\sqrt{2}}{1} + \frac{5-\sqrt{4}}{4} + \frac{5-\sqrt{6}}{9} + \frac{5-\sqrt{8}}{16}$
- 3. Use 3 left rectangles to approximate the area of the region bounded by  $f(x) = 1 + 2x^2$ , the x-axis, x = 3, and x = 7.
- 4. Use the table of values on the right to estimate the below:

X	2	5	6	8	12	13	14
f(x)	1	2	8	3	1	6	5

- Use 2 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [5, 13]
- Use 3 left-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [2, 14]
- Use 2 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [6, 14]

5. Given the region bounded by g (x) =  $3 + 2x^2$ , the x-axis, x = -2, and x = 1. Use the <u>limit definition</u> to find the exact area of the region.

Find the general antiderivative of g(x). (Find  $\int g(x)dx$ )

$$6. g(x) = 3\cos x - 5\sin x + \csc x \cot x - 3\sqrt{x}$$

$$7. g(x) = \frac{2}{3(\sqrt[5]{x})} - 3x^2 - \frac{1}{3e^4}$$

8. 
$$g(x) = \frac{2x^3 - 5\sqrt{x} + 3(\sqrt[4]{x})}{x}$$

9. Find the **general** expression of f(x) if  $f''(x) = 3x^3 + 5x^2 - x + 5$ 

10. Find the **specific** expression of f(x) if  $f'(x) = 5x^2 + 9x - 4$ , f(0) = 7

## (1)

### AP Calculus AB 4-1, 4-2, 4-6 Morning Review WS #3

Calculators permitted.

- 1. Find the sum:  $\sum_{i=1}^{3} \left[ (2i+1)^{2i} + (3i+1)^{3} \right]$
- 2. Use Sigma notation to write the sum:  $\frac{7\sqrt{3}}{27} + \frac{7\sqrt{4}}{64} + \frac{7\sqrt{5}}{125} + \frac{7\sqrt{6}}{216}$
- 3. Use 4 middle rectangles to approximate the area of the region bounded by  $f(x) = 3 + 2x^2$ , the x-axis, x = 1, and x = 7.

4. Use the table of values on the right to estimate the below:

x	1	5	6	8	11	13	15
f(x)	4	2	7	3	1	6	5

- a. Use 3 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [1, 15]
- b. Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [5, 11]
- c. Use 4 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [6, 15]

5. Given the region bounded by  $g(x) = 3 - 2x^2$ , the x-axis, x = -1, and x = 1. Use the <u>limit definition</u> to find the exact area of the region.

$$6. g(x) = x(2x - 1)^2$$

$$7. g(x) = \frac{4}{\sqrt[3]{x}} - \sqrt{x} + 3x^2 - \frac{1}{3x^4}$$

8. 
$$g(x) = \frac{x^3 - 2\sqrt{x} + \sqrt[4]{x}}{\sqrt{x}}$$

9. Find the **general** expression of f(x) if  $f''(x) = 2x^3 + 3x^2 + x - 1$ 

10. Find the **specific** expression of f(x) if  $f''(x) = 12x^2 + 18x - 4$ , f'(-1) = 9, and f(1) = 3









## AP Calculus AB 4-1, 4-2, 4-6 Morning Review WS #3

Calculators permitted.

- itted.  $\sum_{i=1}^{3} \left[ (2i+1)^{2} (3i+1)^{3} \right] = \left( 2(i) + i \right)^{2} \left( 3(i) + i \right)^{3} + \left( 2(2) + i \right)^{3} \left( 3(2) + i \right)^{3} + \left( 2(3) + i \right)^{3} \left( 3(3) + i \right)^{3} + \left( 2(3) + i \right)^{3} + \left( 2(3) + i \right)^{3} + \left( 2(3) + i \right)^{3} \left( 3(3) + i \right)^{3} + \left( 2(3) + i \right)^{3$
- 2. Use Sigma notation to write the sum:  $\frac{7\sqrt{3}}{27} + \frac{7\sqrt{4}}{64} + \frac{7\sqrt{5}}{125} + \frac{7\sqrt{6}}{216}$
- 3. Use 4 middle rectangles to approximate the area of the region bounded by  $f(x) = 3 + 2x^2$ , the x-axis, x = 1, and x = 7.

$$w = \frac{7 - 1}{4} = \frac{6}{4} = \frac{3}{2}$$

$$Area \approx \frac{3}{2} \cdot f(1)$$

$$= \frac{3}{2} (7.125)$$

$$= \frac{3}{2} (7.125)$$
4. Use the table of values on the right to estimate

Area 
$$\approx \frac{3}{2} \cdot f(\frac{7}{4}) + \frac{3}{2} \cdot f(\frac{13}{4}) + \frac{3}{2} \cdot f(\frac{19}{4}) + \frac{3}{2} \cdot f(\frac{25}{4})$$
  
=  $\frac{3}{2}(9.125) + \frac{3}{2}(24.125) + \frac{3}{2}(48.125) + \frac{3}{2}(81.125) = 243.75$ 

the below:

Х	1	5	6	8	11	13	15
f(x)	4	2	7	3	1	6	5

Use 3 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on

$$\frac{1}{1|5|6|8|11|13|15}$$

$$\frac{1}{4|2|7|3|1|6|5}$$

$$5(2)+5(3)+4(6)=49$$

Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [5, 11]

$$\frac{5|6|8|11}{2|7|3|1}$$

$$1(7) + 2(3) + 3(1) = \boxed{16}$$

Use 4 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [6, 15] *Area = Sch, +h2

$$\frac{6|8|1|1|3|15}{7|3|1|6|5}$$

$$\frac{2}{2}[7+3] + \frac{3}{2}[3+1] + \frac{2}{2}[1+6] + \frac{2}{2}[6+5]$$

$$10 + \frac{3}{2}(4) + 1(7) + 1(11) = |34|$$

5. Given the region bounded by g (x) =  $3 - 2x^2$ , the x-axis, x = -1, and x = 1. Use the <u>limit definition</u> to

5. Given the region bounded by 
$$g(x) = 3 - 2x^2$$
, the x-axis,  $x = -1$ , and  $x = 1$ . Use the limit definition to find the exact area of the region.

$$\omega = \frac{1 - (-1)}{n} = \frac{2}{n}$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot f\left[-1 + \frac{2}{n}i\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(-1 + \frac{2}{n}i\right)^2\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[3 - 2\left(1 - \frac{4}{n}i + \frac{4}{n^2}i^2\right)\right]$$

$$\sum_{i=1}^{n} \frac{2}{n} + \frac{16}{n^2}i - \frac{16}{n^3}i^2$$

$$\left[ 1 + \frac{8}{n}i - \frac{8}{n^2}i^2 \right] + \frac{16}{n^2}i - \frac{16}{n^3}i^2$$

$$\lim_{n \to \infty} \frac{1}{n} \frac{1}{n^2} \frac{1}{2} \frac{1}{n^3} \frac{1}{6} \frac{1}{6$$

$$\lim_{40} \sum_{i=1}^{2} \frac{2}{n} + \sum_{i=1}^{16} \frac{16}{n^{3}} = \sum_{i=1}^{16} \frac{2}{n^{3}} = \frac{14}{3}$$

Find the general antiderivative of 
$$g(x)$$
. (Find  $\int g(x)dx$ )

6.  $g(x) = x(2x-1)^2$ 

$$\int x(4x^2-4x+1)dx$$

$$\int x(2x-1)^2 dx$$

$$\int x(2x-1)^2 dx$$

$$\int (2x-1)^2 dx$$

$$\frac{4x^{4} - 4x^{3} + x^{2}}{4 - 3x^{3} + x^{2} + C}$$

$$x^{4} - \frac{4}{3}x^{3} + \frac{x^{2}}{2} + C$$

$$7. g(x) = \frac{4}{\sqrt[3]{x}} - \sqrt{x} + 3x^2 - \frac{1}{3x^4}$$

$$\int 4x^{-1/3} - x^{1/2} + 3x^2 - \frac{1}{3}x^{-4} dx$$

$$7. g(x) = \frac{4}{\sqrt[3]{x}} - \sqrt{x} + 3x^{2} - \frac{1}{3x^{4}}$$

$$\int 4x^{-1/3} - x^{-1/2} + 3x^{2} - \frac{1}{3}x^{4} dx$$

$$\int 4x^{-1/3} - x^{-1/2} + 3x^{2} - \frac{1}{3}x^{4} dx$$

$$\int 4x^{-1/3} - x^{-1/2} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{2} - \frac{1}{3}x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$\int 4x^{-1/3} - x^{-1/3} + 3x^{-1/3} + 3x^{-1/3} + C$$

$$8. g(x) = \frac{x^{3} - 2\sqrt{x} + \sqrt[4]{x}}{\sqrt{x}}$$

$$\int (x^{3} - 2x')^{2} + x''^{4} \int x''^{4} dx$$

$$\int x^{5/2} - 2 + x''^{4} dx$$

$$8. g(x) = \frac{x^{3} - 2\sqrt{x} + \sqrt[4]{x}}{\sqrt{x}}$$

$$\int (x^{3} - 2x')^{2} + x''^{4} - 2x' dx$$

$$\int x^{5/2} - 2 + x''^{4} dx$$

$$\frac{2}{7} x^{7/2} - 2x + \frac{4}{3} x'^{4} + C$$

$$\frac{2}{7} x^{7/2} - 2x + \frac{4}{3} x'^{4} + C$$

$$f'(x) = \int 2x^{3} + 3x^{2} + x - 1 dx$$

$$f'(x) = \frac{2x^{4}}{4} + \frac{3x^{3}}{3} + \frac{x^{2}}{2} - x + c$$

$$f'(x) = \int 2x^{3} + 3x^{2} + x - 1 dx \qquad f(x) = \frac{1}{2} \cdot \frac{x^{5}}{5} + \frac{x^{4}}{4} + \frac{1}{2} \cdot \frac{x^{3}}{3} - \frac{x^{2}}{2} + Cx + k$$

$$f'(x) = \frac{2x^{4}}{4} + \frac{3x^{3}}{3} + \frac{x^{2}}{2} - x + c \qquad f(x) = \frac{1}{10}x^{5} + \frac{1}{4}x^{4} + \frac{1}{6}x^{3} - \frac{1}{2}x^{2} + cx + k$$

 $f''(x) = 12x^2 + 18x - 4$ , f'(-1) = 9, and f(1) = 310. Find the **specific** expression of f(x) if

$$f'(x) = \int 12x^{2} + 18x - 4 dx$$

$$f'(x) = \frac{12x^{3}}{3} + \frac{18x^{2}}{2} - 4x + C$$

$$f(x) = \frac{12x^{3}}{3} + \frac{18x^{2}}{2} - 4x + C$$

$$f(x) = \int 4x^{3} + 9x^{2} - 4x dx$$

$$f(x) = \int 4x^{3} + 9x^{2} - 4x dx$$

$$f(x) = \int 4x^{3} + 9x^{2} - 4x dx$$

$$f(x) = \frac{4x^{4}}{4} + \frac{9x^{3}}{3} - \frac{4x^{2}}{2} + k$$

$$9 = -4 + 9 + 4 + C$$

$$0 = C$$

$$f'(x) = \int 12x^{2} + 18x - 4dx \qquad f'(x) = 4x^{3} + 9x^{2} - 4x$$

$$f'(x) = \frac{12x^{3}}{3} + \frac{18x^{2}}{2} - 4x + C \qquad f(x) = \frac{12x^{3}}{4} + 9x^{2} - 4x dx$$

$$9 = 4(-1)^{3} + 9(-1)^{2} - 4(-1) + C \qquad f(x) = \frac{4x^{4}}{4} + \frac{9x^{3}}{3} - \frac{4x^{2}}{2} + K$$

$$9 = -4 + 9 + 4 + C \qquad f(x) = \frac{4x^{4}}{4} + \frac{9x^{3}}{3} - \frac{4x^{2}}{2} + K$$

$$f(x) = x^{4} + 3x^{3} - 2x^{2} + k$$

$$3 = (1)^{4} + 3(1)^{3} - 2(1)^{2} + k$$

$$3 = 1 + 3 - 2 + k$$

$$1 = k$$

$$f(x) = x^{4} + 3x^{3} - 2x^{2} + 1$$