Calculus Chapter 4.4b Average Value Theorem’(MfVT for Integrals)

If function f is integrable on the closed interval [a,
b], then the average value of f on the interval is_
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*There exists a rectangle such that the area of the rectangle is the same as the area under the curve
(shaded region). f (c) is the height of the rectangle

_ Example 1: a) Find the average value of f{x) =x*+ 1 on[2, 5]. b) find the ¢ value



2™ Fundamental Theorem of Calculus (SFTO)

Definite Integral as a Function
To recap, we’ve covered:

1) Indefinite General Integrals (Area-finding functions)
2) Definite Integrals (Finds Area between 2 x-values)

There is also now a function that is the integral itself. Instead of going from a constant to another
constant, we are going from a constant to a moving value of x.
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2" Fundamental Theorem of Calculus **Very Important**

Applies the concept that derivative and integrals are inverse operations of each other.
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If function f is integrable on the closed interval [a,
b], then the average value of f on the interval is
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*There exists a rectangle such that the area of the rectangle is the same as the area under the curve
(shaded region). f (c) is the height of the rectangle

Example 1: a) Find the average value of f(x) =x*+ 1 on [2, 5] b) find the c value
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Definite Integral as a Function
To recap, we’ve covered:

1) Indefinite General Integrals (Area-finding functions)
2) Definite Integrals (Finds Area between 2 x-values)

There is also now a function that is the integral itself. Instead of going from a constant to another

constant, we are going from a constant to a moving value of x.

Consider: J(X)= If (¢)dt

2" Fundamental Theorem of Calculus **Very Important**

Applies the concept that derivative and integrals are inverse operations of each other.
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