If function f is integrable on the closed interval [a, b], then the average value of f on the interval is

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

*There exists a rectangle such that the area of the rectangle is the same as the area under the curve (shaded region). f (c) is the height of the rectangle

Example 1: a) Find the average value of $f(x) = x^2 + 1$ on [2, 5]. b) find the c value

2nd Fundamental Theorem of Calculus (SFTC)

Definite Integral as a Function

To recap, we've covered:

1) Indefinite General Integrals (Area-finding functions)

2) Definite Integrals (Finds Area between 2 x-values)

There is also now a function that is the integral itself. Instead of going from a constant to another constant, we are going from a constant to a moving value of x.

Consider:

$$f(x) = \int_{a}^{x} f(t)dt$$

2nd Fundamental Theorem of Calculus **Very Important**

Applies the concept that derivative and integrals are inverse operations of each other.

1)
$$\frac{d}{dx} \left[\int_{a}^{p(x)} f(t) dt \right] = f(p(x)) \cdot p'(x)$$
 (a is a constant)

$$\frac{dx}{dx} \begin{bmatrix} \int_{q(x)}^{p(x)} f(t)dt \end{bmatrix} = f(p(x)) \cdot p'(x) - f(q(x)) \cdot q'(x)$$

Example 2:

a)
$$\frac{d}{dx} \left[\int_{-3}^{x} \sqrt{t^2 + 4} dt \right] =$$

b)
$$\frac{d}{dx} \left[\int_{3}^{x^2} \sqrt{t - 1} dt \right] =$$

c)
$$\frac{d}{dx} \left[\int_{10}^{x^2} \sqrt{t - 1} dt \right] =$$

$$d) \frac{d}{dx} \left[\int_{3x}^{0} \frac{1}{t+2} dt \right] =$$

e)
$$\frac{d}{dx} \left[\int_{x}^{x^2} (2t+3)dt \right] =$$

If function f is integrable on the closed interval [a, b], then the average value of f on the interval is

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
height width

*There exists a rectangle such that the area of the rectangle is the same as the area under the curve (shaded region). f (c) is the height of the rectangle

Example 1: a) Find the average value of $f(x) = x^2 + 1$ on [2, 5]. b) find the c value

* Use Aug. Value Theorem:
$$f(c) = \frac{1}{5-2} \int_{-2}^{5} x^{2} + 1 dx$$

a) $f(c) = \frac{1}{3} \cdot \frac{x^{3}}{3} + x \Big]_{2}^{5} = \frac{1}{3} \Big[\frac{5^{3}}{3} + 5 - \Big(\frac{2^{3}}{3} + 2 \Big) \Big]$

$$= \frac{1}{3} \Big[\frac{117}{3} + 3 \Big] = \frac{1}{3} \Big(\frac{126}{3} \Big) = 14 \qquad \qquad f(c) = 14 \Big]$$

b) Find c-value
$$f(x) = x^{2} + 1$$

$$f(c) = c^{2} + 1$$

$$14 = c^{2} + 1$$

$$13 = c^{2}$$

$$c = + \sqrt{13}$$

2nd Fundamental Theorem of Calculus (SFTC)

Definite Integral as a Function

To recap, we've covered:

- 1) Indefinite General Integrals (Area-finding functions)
- 2) Definite Integrals (Finds Area between 2 x-values)

There is also now a function that is the integral itself. Instead of going from a constant to another constant, we are going from a constant to a moving value of x.

Consider:

$$f(x) = \int_{a}^{x} f(t)dt$$

2nd Fundamental Theorem of Calculus **Very Important**

Applies the concept that derivative and integrals are inverse operations of each other.

1)
$$\frac{d}{dx} \left[\int_{a}^{p(x)} f(t) dt \right] = f(p(x)) \cdot p'(x)$$
 (a is a constant)

2)
$$\frac{d}{dx} \left[\int_{q(x)}^{p(x)} f(t) dt \right] = f(p(x)) \cdot p'(x) - f(q(x)) \cdot q'(x)$$

Example 2:

a)
$$\frac{d}{dx} \left[\int_{-3}^{x} \sqrt{t^2 + 4} dt \right] = \sqrt{x^2 + 4} - 1$$
$$= \sqrt{x^2 + 4}$$

b)
$$\frac{d}{dx} \left[\int_{3}^{x^{2}} \sqrt{t - 1} dt \right] = \sqrt{x^{2} - 1} \cdot 2x$$
$$= \sqrt{2} \times \sqrt{x^{2} - 1}$$

c)
$$\frac{d}{dx} \left[\int_{10}^{x^2} \sqrt{t - 1} dt \right] = \sqrt{\chi^2 - 1} \cdot 2\chi$$

$$= 2\chi \sqrt{\chi^2 - 1}$$

$$d) \frac{d}{dx} \left[\int_{3x}^{0} \frac{1}{t+2} dt \right] = \frac{d}{dx} \left[-\int_{0}^{3x} \frac{1}{t+2} dt \right] = \frac{-1}{3x+2}, \quad 3 = \frac{-3}{3x+2}$$

e)
$$\frac{d}{dx} \left[\int_{x}^{x^{2}} (2t+3)dt \right] = \left[2(x^{2})+3 \right] \cdot (2x) - (2x+3)(1)$$

$$= 4x^{3}+6x-2x-3$$

$$= 4x^{3}+4x-3$$