AP Calculus AB 4-2, 4-6 Morning Review Calculators permitted.

Name

1. Find the sum: $\sum_{i=1}^{3} \left[(2i+1)^2 - (3i+1)^3 \right]$

2. Use Sigma notation to write the sum:
$$\frac{7\sqrt{3}}{27} + \frac{7\sqrt{4}}{64} + \frac{7\sqrt{5}}{125} + \frac{7\sqrt{6}}{216} + \dots + \frac{7\sqrt{n}}{n^3}$$

- 3. Use 4 middle rectangles to approximate the area of the region bounded by $f(x) = 3 + 2x^2$, the x-axis, x = 1, and x = 7.
- 4. Use the table of values on the right to estimate the below:

X	1	5	6	8	11	13	15
f(x)	4	2	7	3	1	6	5

- a. Use 3 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [1, 15]
- b. Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [5, 11]
- c. Use 4 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [6, 15]

5. Given the region bounded by $g(x) = 3 - 2x^2$, the x-axis, x = -1, and x = 1. Use the <u>limit definition</u> to find the exact area of the region.

AP Calculus AB 4-2, 4-6 Morning Review

Calculators permitted.

1. Find the sum:
$$\sum_{i=1}^{3} \left[(2i+1)^2 - (3i+1)^3 \right] = (3+1)^2 - (3+1)^3 + (4+1)^2 - (6+1)^3 + (6+1)^2 - (9+1)^3$$

$$= 3^2 - 4^3 + 5^2 - 7^3 + 7^2 - 10^3 = -1324$$

2. Use Sigma notation to write the sum:
$$\frac{7\sqrt{3}}{27} + \frac{7\sqrt{4}}{64} + \frac{7\sqrt{5}}{125} + \frac{7\sqrt{6}}{216} + \dots + \frac{7\sqrt{n}}{n^3}$$

3. Use 4 middle rectangles to approximate the area of the region bounded by

$f(x) = 3*2x^{-}$, the x	-axis, $x = 1$, and $x = 7$.
W= 6-0 = 7-1=3	(35) (3.25) (4.75) (,25)
-3	
	1 20 1 60 7

4. Use the table of values on the right to estimate the below:

•	5
A	$\approx (1.5)f(1.75) + 1.5 \cdot f(3.25) +$
	1 = P/117-1 + 1 = P/CD-1
	1.5 · f(4.75) + 1.5 · f(6.25)
	21.5(9.125+24.125+48.125+81.125)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	-		-		7 1	3 T T	0 1145	7481,123
X	1 '	5	6	8	11	13	15	2 (1.5) (162.5)
f(x)	4	2	7	3	1	6	5	2/143.75
			L	-1	1	16		2/02/10/10

Use 3 middle rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [1,

Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [5, 11]

$$1f(6) + 2f(8) + 3f(1)
 1(7) + 2(3) + 3(1)
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 17
 17
 17
 17
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18$$

Use 4 trapezoids with interval indicated by the table to estimate area between the curve and x-axis on [6, 15]

and x-axis on [5, 11]
$$1f(6) + 2f(8) + 3f(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(3) + 3(1)$$

$$1(7) + 2(7) + 2(11)$$

$$1(7) + 3(4) + 2(7) + 2(11)$$

5. Given the region bounded by $g(x) = 3 - 2x^2$, the x-axis, x = -1, and x = 1. Use the <u>limit definition</u> to find the exact area of the region.

A =
$$\lim_{n \to \infty} \sum_{i=1}^{\infty} width \cdot f[a + width \cdot i]$$

= $\frac{2}{n} \cdot f[-1 + \frac{2}{n}i]$ | $\lim_{n \to \infty} \frac{2}{n} \cdot [3 - 2(-1 + \frac{2}{n}i)^2]$ | $\lim_{n \to \infty} \frac{2}{n} \cdot [3 - 2(1 - \frac{4}{n}i + \frac{4}{n^2}i^2)]$ | $\lim_{n \to \infty} \frac{2}{n} \cdot [3 - 2 + \frac{8}{n}i - \frac{8}{n^2}i^2]$ | $\lim_{n \to \infty} \frac{2}{n} \cdot [3 - 2 + \frac{8}{n}i - \frac{8}{n^2}i^2]$

$$\lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{16}{n^2} \sum_{i=1}^{n} \frac{16}{n^2} \sum_{i=1}^{n} \frac{16}{n^2}$$

$$\lim_{n \to \infty} \frac{2}{n}(n) + \frac{16}{n^2} \left[\frac{n(n+1)}{2} \right] - \frac{16}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right]$$

$$\lim_{n \to \infty} 2 + \frac{16n^2}{2n^2} - \frac{16(2n^3)}{6n^3}$$

$$= 2 + 8 - \frac{32}{6}$$