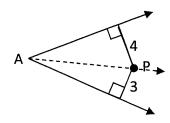
Geometry Points of Concurrency Notes Incenter and Circumcenter

Essential Question: What are the properties of an angle bisector?

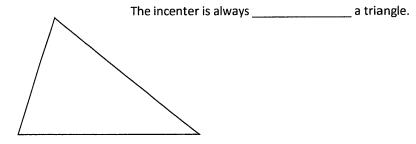
• An	is	a segment, ray, line or plane that int	ersects an angle to form two
adjacent	angles.		
1			
			
The distance from a point t	o a line is the length of t	he	segment from the
point to the line.	-		
P			
•	∕ ^B		
d \			
		•	
A			
Angle Bisector Theorem: If a po	oint is on the bisector of	an angle, then it is	from the two
sides of the angle.			
/			
	,	In other words:	
F		If ∠FAD ≌ ∠EAD, then	
		,	
A 063			
Converse of the Angle Bisector	Theorem: If a point is in	the interior of an angle and is equidi	istant from the sides of the
angle, then it lies on the			
F		In other words:	
·/ /			
		If FD = ED, then	•

Example 1: Can you conclude that P is on the bisector of $\angle A$? Explain.

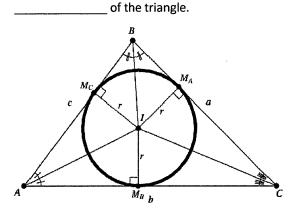


- When three or more lines (or rays or segments) ______ in the same point, they are called **concurrent**lines. The point of intersection of the lines is called the ______.
- The point of concurrency of the **angle bisectors** of a triangle is called the ______ of the triangle.

Sketch a picture of the incenter.

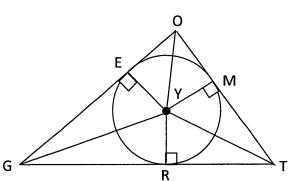


Theorem: The angle bisectors of a triangle intersect at a point that is ______ from the



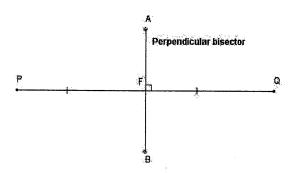
Since the incenter is equidistant from the sides of a triangle, then an ______ circle can be drawn. An inscribed circle is a circle with a center at the incenter and a radius that is the distance to the sides

Example 2: If point Y is the incenter, find YR and MT if TY = 26 and RT = 24.



Essential Question: What are the properties of a perpendicular bisector?

A perpendicular bisector is a segment, ray, line or plane that is _______ to a segment at its _______ to a segment at a



Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is

from the endpoints of the segment.



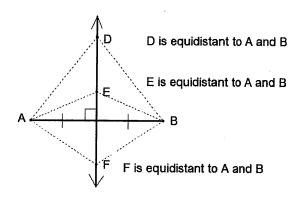
In other words:

If \overrightarrow{DF} is the perpendicular bisector of \overrightarrow{AB} , then AD = BD, AE = BE, and AF = BF.

Converse of the Perpendicular Bisector Theorem: If a point is equidistant from the endpoints of a segment, then it is on

the _____

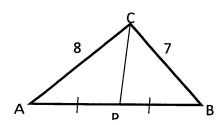
of the segment.



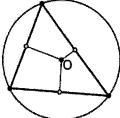
In other words:

If AD = BD, AE = BE, and AF = BF, then, \overrightarrow{DF} is the perpendicular bisector of \overrightarrow{AB} .

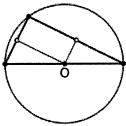
Example 1: Can you conclude that C is on the perpendicular bisector of \overline{AB} ? Explain.



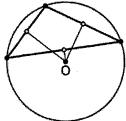
A perpendicular bisector of a triangle is a segment, ray, or line that is _______ to a side of the triangle at the ______ of the side.
 The point of concurrency of the perpendicular bisectors of a triangle is called the ______ of the triangle.



the circumcenter of an acute triangle is inside the triangle



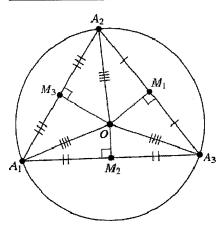
the circumcenter of a right triangle is on the hypotenuse



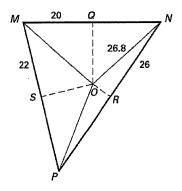
the circumcenter of an obtuse triangle is outside the triangle

Theorem: The perpendicular bisectors of a triangle intersect at a point that is ______ from the

_____ of the triangle.



Example 2: If point O is the circumcenter, find MO, PO, PS, PR, and MN.



Example 3: Cassie, Jim, and Sal are old college buddies that have moved apart. They want to get together. To be fair, they want to find a location that is the same distance for each of them to travel. How could they locate that spot?