Geometry Points of Concurrency Notes Incenter and Circumcenter

Essential Question: What are the properties of an angle bisector?

• An <u>angle bisector</u> is a segment, ray, line or plane that intersects an angle to form two adjacent <u>congruent</u> angles.

• The distance from a point to a line is the length of the point to the line. segment from the

Angle Bisector Theorem: If a point is on the bisector of an angle, then it is equidis tant from the two sides of the angle.

In other words:

If $\angle FAD \cong \angle EAD$, then $FO \cong \angle ED$

Converse of the Angle Bisector Theorem: If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.

In other words:

If FD = ED, then $\angle FAD \cong \angle EAD$

Example 1: Can you conclude that P is on the bisector of $\angle A$? Explain.

No, Distance from bisector to the sides of the angle are not equal.

- When three or more lines (or rays or segments) <u>intersect</u> in the same point, they are called **concurrent** lines. The point of intersection of the lines is called the <u>point</u> of <u>concurrency</u>.

Sketch a picture of the incenter.

The incenter is always <u>in Side</u> a triangle.

Since the incenter is equidistant from the sides of a triangle, then an _______ circle can be drawn. Ar inscribed circle is a circle with a center at the incenter and a radius that is the distance to the sides

Example 2: If point Y is the incenter, find YR and MT if TY = 26 and RT = 24.

$$x^{2} + 24^{2} = 26^{2}$$
 $x^{2} = 100$
 $X = 10$

Essential Question: What are the properties of a perpendicular bisector?

• A perpendicular bisector is a segment, ray, line or plane that is <u>perpendicular</u> to a segment at its

Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is

equidisfant from the endpoints of the segment.

In other words:

If \overrightarrow{DF} is the perpendicular bisector of \overline{AB} , then AD = BD, AE = BE, and AF = BF.

Converse of the Perpendicular Bisector Theorem: If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector

of the segment.

In other words:

If AD = BD, AE = BE, and AF = BF, then, \overrightarrow{DF} is the perpendicular bisector of \overrightarrow{AB} .

Example 1: Can you conclude that C is on the perpendicular bisector of \overline{AB} ? Explain.

- A perpendicular bisector of a triangle is a segment, ray, or line that is <u>perpendicular</u> to a side of the triangle at the <u>midpoint</u> of the side.
- The point of concurrency of the perpendicular bisectors of a triangle is called the

Circumcenter of the triangle.

the circumcenter of an acute triangle is inside the triangle

the circumcenter of a right triangle is on the hypotenuse

the circumcenter of an obtuse triangle is outside the triangle

Theorem: The perpendicular bisectors of a triangle intersect at a point that is Vertices of the triangle.

equidistant f

from the

Example 2: If point O is the circumcenter, find MO, PO, PS, PR, and MN.

Example 3: Cassie, Jim, and Sal are old college buddies that have moved apart. They want to get together. To be fair, they want to find a location that is the same distance for each of them to travel. How could they locate that spot?

Find incenter or circumcenter