107. Let
$$f(t) = \ln t$$
 on $[x, y]$, $0 < x < y$.

By the Mean Value Theorem,

$$\frac{f(y) - f(x)}{y - x} = f'(c), \quad x < c < y,$$

$$\frac{\ln y - \ln x}{y - x} = \frac{1}{c}.$$

Because $0 < x < c < y, \frac{1}{x} > \frac{1}{c} > \frac{1}{y}$. So,

$$\frac{1}{y} < \frac{\ln y - \ln x}{y - x} < \frac{1}{x}.$$

108. $F(x) = \int_{x}^{2x} \frac{1}{t} dt$, x > 0 $F'(x) = \frac{1}{2x}(2) - \frac{1}{x} = 0 \Rightarrow F \text{ is constant on } (0, \infty)$

Alternate Solution:

$$F(x) = \left[\ln t\right]_x^{2x} = \ln(2x) - \ln x$$
$$= \ln 2 + \ln x - \ln x$$
$$= \ln 2$$

Section 5.3 Inverse Functions

1. (a)
$$f(x) = 5x + 1$$

 $g(x) = \frac{x - 1}{5}$
 $f(g(x)) = f(\frac{x - 1}{5}) = 5(\frac{x - 1}{5}) + 1 = x$

$$g(f(x)) = g(5x + 1) = \frac{(5x - 1) - 1}{5} = x$$

2. (a)
$$f(x) = 3 - 4x$$

 $g(x) = \frac{3 - x}{4}$
 $f(g(x)) = f(\frac{3 - x}{4}) = 3 - 4(\frac{3 - x}{4}) = x$
 $g(f(x)) = g(3 - 4x) = \frac{3 - (3 - 4x)}{4} = x$

3. (a)
$$f(x) = x^3$$

 $g(x) = \sqrt[3]{x}$
 $f(g(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x$
 $g(f(x)) = g(x^3) = \sqrt[3]{x^3} = x$

4. (a)
$$f(x) = 1 - x^3$$

 $g(x) = \sqrt[3]{1 - x}$
 $f(g(x)) = f(\sqrt[3]{1 - x}) = 1 - (\sqrt[3]{1 - x})^3$
 $= 1 - (1 - x) = x$
 $g(f(x)) = g(1 - x^3)$
 $= \sqrt[3]{1 - (1 - x^3)} = \sqrt[3]{x^3} = x$

6. (a)
$$f(x) = 16 - x^2$$
, $x \ge 0$
 $g(x) = \sqrt{16 - x}$
 $f(g(x)) = f(\sqrt{16 - x}) = 16 - (\sqrt{16 - x})^2$
 $= 16 - (16 - x) = x$
 $g(f(x)) = g(16 - x^2) = \sqrt{16 - (16 - x^2)}$
 $= \sqrt{x^2} = x$

7. (a)
$$f(x) = \frac{1}{x}$$
$$g(x) = \frac{1}{x}$$
$$f(g(x)) = \frac{1}{1/x} = x$$
$$g(f(x)) = \frac{1}{1/x} = x$$

8. (a)
$$f(x) = \frac{1}{1+x}, \quad x \ge 0$$

 $g(x) = \frac{1-x}{x}, \quad 0 < x \le 1$
 $f(g(x)) = f(\frac{1-x}{x}) = \frac{1}{1+\frac{1-x}{x}} = \frac{1}{\frac{1}{x}} = x$
 $g(f(x)) = g(\frac{1}{1+x}) = \frac{1-\frac{1}{1+x}}{\frac{1}{1+x}} = \frac{x}{1+x} \cdot \frac{1+x}{1} = x$

- 9. Matches (c)
- 10. Matches (b)
- 11. Matches (a)
- 12. Matches (d)
- 13. $f(x) = \frac{3}{4}x + 6$

One-to-one; has an inverse

14.
$$f(x) = 5x - 3$$

One-to-one; has an inverse

15.
$$f(\theta) = \sin \theta$$

Not one-to-one; does not have an inverse

16.
$$f(x) = \frac{6x}{x^2 + 4}$$

Not one-to-one; does not have an inverse

17.
$$h(s) = \frac{1}{s-2} - 3$$

One-to-one; has an inverse

18.
$$g(t) = \frac{1}{\sqrt{t^2 + 1}}$$

Not one-to-one; does not have an inverse

$$19. \ f(x) = \ln x$$

One-to-one; has an inverse

20.
$$f(x) = 5x\sqrt{x-1}$$

One-to-one; has an inverse

21.
$$g(x) = (x + 5)^3$$

One-to-one; has an inverse

22.
$$h(x) = |x + 4| - |x - 4|$$

Not one-to-one; does not have an inverse

23.
$$f(x) = 2 - x - x^3$$

$$f'(x) = -1 - 3x^2 < 0 \text{ for all } x$$

f is decreasing on $(-\infty, \infty)$. Therefore, f is strictly monotonic and has an inverse.

24.
$$f(x) = x^3 - 6x^2 + 12x$$

$$f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 \ge 0$$
 for all

f is increasing on $(-\infty, \infty)$. Therefore, f is strictly monotonic and has an inverse.

25.
$$f(x) = \frac{x^4}{4} - 2x^2$$

$$f'(x) = x^3 - 4x = 0$$
 when $x = 0, 2, -2$

f is not strictly monotonic on $(-\infty, \infty)$. Therefore, f does not have an inverse.

26.
$$f(x) = x^5 + 2x^3$$

$$f'(x) = 5x^4 + 6x^2 \ge 0 \text{ for all } x$$

f is increasing on $(-\infty, \infty)$. Therefore, f is strictly monotonic and has an inverse.

27.
$$f(x) = \ln(x-3), x > 3$$

$$f'(x) = \frac{1}{x-3} > 0 \text{ for } x > 3$$

f is increasing on $(3, \infty)$. Therefore, f is strictly monotonic and has an inverse.

28.
$$f(x) = \cos \frac{3x}{2}$$

$$f'(x) = -\frac{3}{2}\sin\frac{3x}{2} = 0$$
 when $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}, \cdots$

f is not strictly monotonic on $(-\infty, \infty)$. Therefore, f does not have an inverse.

$$f'(x) = 2(x - 4) > 0 \text{ on } [4, \infty)$$

f is increasing on $[4, \infty)$. Therefore, f is strictly monotonic and has an inverse.

30.
$$f(x) = |x + 2| \text{ on } [-2, \infty)$$

$$f'(x) = \frac{|x+2|}{x+2}(1) = 1 > 0 \text{ on } [-2, \infty)$$

f is increasing on $[-2, \infty)$. Therefore, f is strictly monotonic and has an inverse.

31.
$$f(x) = \frac{4}{x^2}$$
 on $(0, \infty)$

$$f'(x) = -\frac{8}{x^3} < 0 \text{ on } (0, \infty)$$

f is decreasing on $(0, \infty)$. Therefore, f is strictly monotonic and has an inverse.

32.
$$f(x) = \cot x \text{ on } (0, \pi)$$

$$f'(x) = -\csc^2 x < 0 \text{ on } (0, \pi)$$

f is decreasing on $(0, \pi)$. Therefore, f is strictly monotonic and has an inverse.

33.
$$f(x) = \cos x \text{ on } [0, \pi]$$

$$f'(x) = -\sin x < 0 \text{ on } (0, \pi)$$

f is decreasing on $[0, \pi]$. Therefore, f is strictly monotonic and has an inverse.

34.
$$f(x) = \sec x \text{ on } \left[0, \frac{\pi}{2}\right]$$

$$f'(x) = \sec x \tan x > 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

f is increasing on $[0, \pi/2)$. Therefore, f is strictly monotonic and has an inverse.

35. (a)
$$f(x) = 2x - 3 = y$$

$$x = \frac{y+3}{2}$$

$$y = \frac{x+3}{2}$$

$$f^{-1}(x) = \frac{x+3}{2}$$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: all real numbers Range of f: all real numbers Domain of f^{-1} : all real numbers Range of f^{-1} : all real numbers

36. (a)
$$f(x) = 7 - 4x = y$$

$$x = \frac{7 - y}{4}$$

$$y = \frac{7 - x}{4}$$

$$f^{-1}(x) = \frac{7-x}{4}$$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: all real numbers

Range of f: all real numbers

Domain of f^{-1} : all real numbers

Range of f^{-1} : all real numbers

37. (a) $f(x) = x^5 = y$ $x = \sqrt[5]{y}$ $y = \sqrt[5]{x}$ $f^{-1}(x) = \sqrt[5]{x} = x^{1/2}$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: all real numbers Range of f: all real numbers Domain of f^{-1} : all real numbers Range of f^{-1} : all real numbers
- 38. (a) $f(x) = x^3 1 = y$ $x = \sqrt[3]{y+1}$ $y = \sqrt[3]{x+1}$ $f^{-1}(x) = \sqrt[3]{x+1} = (x+1)^{1/3}$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: all real numbers
 Range of f: all real numbers
 Domain of f^{-1} : all real numbers
 Range of f^{-1} : all real numbers

39. (a) $f(x) = \sqrt{x} = y$ $x = y^2$ $y = x^2$ $f^{-1}(x) = x^2$ x > 0

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: $x \ge 0$ Range of f: $y \ge 0$ Domain of f^{-1} : $x \ge 0$ Range of f^{-1} : $y \ge 0$
- **40.** (a) $f(x) = x^2 = y$, $x \ge 0$ $x = \sqrt{y}$ $y = \sqrt{x}$ $f^{-1}(x) = \sqrt{x}$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x.
- (d) Domain of f: $x \ge 0$ Range of f: $y \ge 0$ Domain of f^{-1} : $x \ge 0$ Range of f^{-1} : $y \ge 0$

A1: (a)
$$f(x) = \sqrt{4 - x^2} = y$$
, $0 \le x \le 2$
 $4 - x^2 = y^2$
 $x^2 = 4 - y^2$
 $x = \sqrt{4 - y^2}$
 $y = \sqrt{4 - x^2}$
 $f^{-1}(x) = \sqrt{4 - x^2}$, $0 \le x \le 2$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x. In fact, the graphs are identical.
- (d) Domain of $f: 0 \le x \le 2$ Range of f: $0 \le y \le 2$ Domain of f^{-1} : $0 \le x \le 2$ Range of f^{-1} : $0 \le y \le 2$
- **42.** (a) $f(x) = \sqrt{x^2 4} = y$, $x \ge 2$ $x^2 = v^2 + 4$ $x = \sqrt{y^2 + 4}$ $v = \sqrt{x^2 + 4}$ $f^{-1}(x) = \sqrt{x^2 + 4}, \quad x \ge 0$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x
- (d) Domain of $f: x \ge 2$ Range of f: $\nu \geq 0$ Domain of f^{-1} : $x \ge 0$ Range of f^{-1} : $y \ge 2$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x
- (d) Domain of f: all real numbers Range of f: all real numbers Domain of f^{-1} : all real numbers Range of f^{-1} : all real numbers

44. (a)
$$f(x) = x^{2/3} = y$$
, $x \ge 0$
 $x = y^{3/2}$
 $y = x^{3/2}$
 $f^{-1}(x) = x^{3/2}$, $x \ge 0$

- (c) The graphs of f and f^{-1} are reflections of each other across the line y = x
- (d) Domain of $f: x \ge 0$ Range of f: $y \ge 0$ Domain of f^{-1} : $x \ge 0$ Range of f^{-1} : $y \ge 0$

45. (a)
$$f(x) = \frac{x}{\sqrt{x^2 + 7}} = y$$

$$x = y\sqrt{x^2 + 7}$$

$$x^2 = y^2(x^2 + 7) = y^2x^2 + 7y^2$$

$$x^2(1 - y^2) = 7y^2$$

$$x = \frac{\sqrt{7}y}{\sqrt{1 - y^2}}$$

$$y = \frac{\sqrt{7}x}{\sqrt{1 - x^2}}$$

$$f^{-1}(x) = \frac{\sqrt{7}x}{\sqrt{1 - x^2}}, \quad -1 < x < 1$$

- (c) The graphs of f and f^{-1} are reflections of each other in the line y = x
- (d) Domain of f: all real numbers Range of f: -1 < y < 1Domain of f^{-1} : -1 < x < 1Range of f^{-1} : all real numbers

46. (a)
$$f(x) = \frac{x+2}{x} = y$$
, $x \neq 0$
 $x+2 = yx$
 $x(1-y) = -2$
 $x = \frac{2}{y-1}$
 $y = \frac{2}{x-1}$
 $f^{-1}(x) = \frac{2}{x-1}$, $x \neq 1$

- (c) The graphs of f and f^{-1} are reflections of each other in the line y = x
- (d) Domain of f: all $x \neq 0$ Range of f: all $y \neq 1$ Domain of f^{-1} : all $x \neq 1$ Range of f^{-1} : all $y \neq 0$

$$y = 1.25x + 1.60(50 - x)$$
$$= -0.35x + 80, \quad 0 \le x \le 50.$$

(b) Find the inverse of the original function.

$$y = -0.35x + 80$$
$$0.35x = 80 - y$$
$$x = \frac{100}{25}(80 - y)$$

Inverse:
$$y = \frac{100}{35}(80 - x) = \frac{20}{7}(80 - x)$$

x represents cost and y represents pounds.

- (c) Domain of inverse is $62.5 \le x \le 80$.
- (d) If x = 73 in the inverse function, $y = \frac{100}{35}(80 - 73) = \frac{100}{5} = 20$ pounds.

50.
$$C = \frac{5}{9}(F - 32), \quad F \ge -459.6$$

(a)
$$\frac{9}{5}C = F - 32$$

 $F = 32 + \frac{9}{5}C$

- (b) The inverse function gives the temperature *F* corresponding to the Celsius temperature *C*.
- (c) For $F \ge -459.6$, $C = \frac{5}{9}(F 32) \ge -273.1\overline{1}$. Therefore, domain is $C \ge -273.\overline{1} = -273\frac{1}{9}$.

(d) If
$$C = 22^{\circ}$$
, then $F = 32 + \frac{9}{5}(22) = 71.6^{\circ}F$.

51.
$$f(x) = \sqrt{x-2}$$
, Domain: $x \ge 2$
 $f'(x) = \frac{1}{2\sqrt{x-2}} > 0$ for $x > 2$

f is one-to-one; has an inverse

$$\sqrt{x-2} = y$$

$$x-2 = y^2$$

$$x = y^2 + 2$$

$$y = x^2 + 2$$

$$f^{-1}(x) = x^2 + 2, \quad x \ge 0$$

52.
$$f(x) = -3$$

Not one-to-one; does not have an inverse

53.
$$f(x) = |x - 2|, x \le 2$$

= $-(x - 2)$
= $2 - x$

f is one-to-one; has an inverse

$$2 - x = y$$

$$2 - y = x$$

$$f^{-1}(x) = 2 - x, \quad x \ge 0$$

$$54. \ f(x) = ax + b$$

f is one-to-one; has an inverse

$$ax + b = y$$

$$x = \frac{y - b}{a}$$

$$y = \frac{x - b}{a}$$

$$f^{-1}(x) = \frac{x - b}{a}, \quad a \neq 0$$

55.
$$f(x) = (x - 3)^2$$
 is one-to-one for $x \ge 3$.

$$(x-3)^2 = y$$

$$x-3 = \sqrt{y}$$

$$x = \sqrt{y} + 3$$

$$y = \sqrt{x} + 3$$

$$f^{-1}(x) = \sqrt{x} + 3, \quad x \ge 0$$

(Answer is not unique.)

 $16 - x^4 = v$

56.
$$f(x) = 16 - x^4$$
 is one-to-one for $x \ge 0$.

$$16 - y = x^{4}$$

$$\sqrt[4]{16 - y} = x$$

$$\sqrt[4]{16 - x} = y$$

$$f^{-1}(x) = \sqrt[4]{16 - x}, \quad x \le 16$$

(Answer is not unique.)

57.
$$f(x) = |x + 3|$$
 is one-to-one for $x \ge -3$.

$$x + 3 = y$$

$$x = y - 3$$

$$y = x - 3$$

$$f^{-1}(x) = x - 3, \quad x \ge 0$$
(Answer is not unique.)

58.
$$f(x) = |x - 3|$$
 is one-to-one for $x \ge 3$.
 $x - 3 = y$
 $x = y + 3$
 $y = x + 3$
 $f^{-1}(x) = x + 3, \quad x \ge 0$

(Answer is not unique.)

- 59. Yes, the volume is an increasing function, and therefore one-to-one. The inverse function gives the time t corresponding to the volume V.
- **60.** No, there could be two times $t_1 \neq t_2$ for which $h(t_1) = h(t_2)$.
- **61.** No, C(t) is not one-to-one because long distance costs are step functions. A call lasting 2.1 minutes costs the same as one lasting 2.2 minutes.
- 62. Yes, the area function is increasing and therefore one-to-one. The inverse function gives the radius r corresponding to the area A.

63.
$$f(x) = 5 - 2x^3$$
, $a = 7$
 $f'(x) = -6x^2$

f is monotonic (decreasing) on $(-\infty, \infty)$ therefore f has an inverse.

$$f(-1) = 7 \Rightarrow f^{-1}(7) = -1$$

$$(f^{-1})'(7) = \frac{1}{f'(f^{-1}(7))} = \frac{1}{f'(-1)} = \frac{1}{-6(-1)^2} = \frac{-1}{6}$$

64.
$$f(x) = x^3 + 2x - 1$$
, $a = 2$
 $f'(x) = 3x^2 + 2 > 0$

f is monotonic (increasing) on $(-\infty, \infty)$ therefore f has an inverse.

$$f(1) = 2 \Rightarrow f^{-1}(2) = 1$$

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{3(1^2) + 2} = \frac{1}{5}$$

65.
$$f(x) = \frac{1}{27}(x^5 + 2x^3), \quad a = -11$$

 $f'(x) = \frac{1}{27}(5x^4 + 6x^2)$

f is monotonic (increasing) on $(-\infty, \infty)$ therefore f has a inverse.

$$f(-3) = \frac{1}{27}(-243 - 54) = -11 \Rightarrow f^{-1}(-11) = -33$$
$$(f^{-1})'(-11) = \frac{1}{f'(f^{-1}(-11))} = \frac{1}{f'(-3)}$$
$$= \frac{1}{\frac{1}{27}(5(-3)^4 + 6(-3)^2)} = \frac{1}{\frac{1}{27}(459)} = \frac{1}{17}$$

66.
$$f(x) = \sqrt{x-4}$$
, $a = 2$, $x \ge 4$
 $f'(x) = \frac{1}{2\sqrt{x-4}} > 0 \text{ on } (4, \infty)$

f is monotonic (increasing) on $[4, \infty)$ therefore f has an inverse.

$$f(8) = 2 \Rightarrow f^{-1}(2) = 8$$

$$f'(8) = \frac{1}{2\sqrt{8-4}} = \frac{1}{4}$$

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(8)} = \frac{1}{1/4} = 4$$

67.
$$f(x) = \sin x$$
, $a = 1/2, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 $f'(x) = \cos x > 0 \text{ on } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

f is monotonic (increasing) on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ therefore f has an inverse.

$$f\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2} \Rightarrow f^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
$$\left(f^{-1}\right)'\left(\frac{1}{2}\right) = \frac{1}{f'\left(f^{-1}\left(\frac{1}{2}\right)\right)}$$
$$= \frac{1}{f'\left(\frac{\pi}{6}\right)} = \frac{1}{\cos\left(\frac{\pi}{6}\right)} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

68.
$$f(x) = \cos 2x$$
, $a = 1, 0 \le x \le \pi/2$
 $f'(x) = -2 \sin 2x < 0 \text{ on } (0, \pi/2)$

f is monotonic (decreasing) on $[0, \pi/2]$ therefore f has an inverse.

$$f(0) = 1 \Rightarrow f^{-1}(1) = 0$$

$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{-2\sin 0} = \frac{1}{0}$$

So, $(f^{-1})'(1)$ is undefined.

69.
$$f(x) = \frac{x+6}{x-2}, \qquad x > 0, a = 3$$
$$f'(x) = \frac{(x-2)(1) - (x+6)(1)}{(x-2)^2}$$
$$= \frac{-8}{(x-2)^2} < 0 \text{ on } (2, \infty)$$

f is monotonic (decreasing) on $(2, \infty)$ therefore f has an inverse.

$$f(6) = 3 \Rightarrow f^{-1}(3) = 6$$

 $(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{f'(6)} = \frac{1}{-8/(6-2)^2} = -2$

70.
$$f(x) = \frac{x+3}{x+1}$$
, $x > -1$, $a = 2$

$$f'(x) = \frac{(x+1)(1) - (x+3)(1)}{(x+1)^2}$$

$$= \frac{-2}{(x+1)^2} < 0 \text{ on } (-1, \infty)$$

f is monotonic (decreasing) on $(-1, \infty)$ therefore f has an inverse.

$$f(1) = 2 \Rightarrow f^{-1}(2) = 1$$
$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{(-2)/(1+1)^2} = -2$$

71. (a) Domain
$$f = Domain f^{-1} = (-\infty, \infty)$$

(b) Range
$$f = \text{Range } f^{-1} = (-\infty, \infty)$$

(d)
$$f(x) = x^3$$
, $\left(\frac{1}{2}, \frac{1}{8}\right)$
 $f'(x) = 3x^2$
 $f'\left(\frac{1}{2}\right) = \frac{3}{4}$
 $f^{-1}(x) = \sqrt[3]{x}$, $\left(\frac{1}{8}, \frac{1}{2}\right)$
 $\left(f^{-1}\right)'(x) = \frac{1}{3\sqrt[3]{x}}$
 $\left(f^{-1}\right)'\left(\frac{1}{8}\right) = \frac{4}{3}$

72. (a) Domain
$$f = Domain f^{-1} = (-\infty, \infty)$$

(b) Range
$$f = \text{Range } f^{-1} = (-\infty, \infty)$$

(d)
$$f(x) = 3 - 4x$$
, $(1, -1)$
 $f'(x) = -4$
 $f'(1) = -4$
 $f^{-1}(x) = \frac{3 - x}{4}$, $(-1, 1)$
 $(f^{-1})'(x) = -\frac{1}{4}$
 $(f^{-1})'(-1) = -\frac{1}{4}$

- 73. (a) Domain $f = [4, \infty)$, Domain $f^{-1} = [0, \infty)$
 - (b) Range $f = [0, \infty)$, Range $f^{-1} = [4, \infty)$

- (d) $f(x) = \sqrt{x-4}$, (5,1) $f'(x) = \frac{1}{2\sqrt{x-4}}$ $f'(5) = \frac{1}{2}$ $f^{-1}(x) = x^2 + 4$, (1,5) $(f^{-1})'(x) = 2x$ $(f^{-1})'(1) = 2$
- 74. (a) Domain $f = [0, \infty)$, Domain $f^{-1} = (0, 4]$
 - (b) Range f = (0, 4], Range $f^{-1} = [0, \infty)$

(d)
$$f(x) = \frac{4}{1+x^2}$$
$$f'(x) = \frac{-8x}{(x^2+1)^2}$$
$$f'(1) = -2$$
$$f^{-1}(x) = \sqrt{\frac{4-x}{x}}$$
$$(f^{-1})'(x) = \frac{-2}{x^2\sqrt{(4-x)/x}}$$
$$(f^{-1})'(2) = -\frac{1}{2}$$

In Exercises 75-78, use the following.

$$f(x) = \frac{1}{8}x - 3$$
 and $g(x) = x^3$
 $f^{-1}(x) = 8(x + 3)$ and $g^{-1}(x) = \sqrt[3]{x}$

75.
$$(f^{-1} \circ g^{-1})(1) = f^{-1}(g^{-1}(1)) = f^{-1}(1) = 32$$

76.
$$(g^{-1} \circ f^{-1})(-3) = g^{-1}(f^{-1}(-3)) = g^{-1}(0) = 0$$

77.
$$(f^{-1} \circ f^{-1})(6) = f^{-1}(f^{-1}(6)) = f^{-1}(72) = 600$$

78.
$$(g^{-1} \circ g^{-1})(-4) = g^{-1}(g^{-1}(-4)) = g^{-1}(\sqrt[3]{-4})$$

= $\sqrt[3]{\sqrt[3]{-4}} = -\sqrt[9]{4}$

In Exercises 79-82, use the following.

$$f(x) = x + 4$$
 and $g(x) = 2x - 5$
 $f^{-1}(x) = x - 4$ and $g^{-1}(x) = \frac{x + 5}{2}$

79.
$$(g^{-1} \circ f^{-1})(x) = g^{-1}(f^{-1}(x))$$

$$= g^{-1}(x-4)$$

$$= \frac{(x-4)+5}{2}$$

$$= \frac{x+1}{2}$$

80.
$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x))$$

= $f^{-1}(\frac{x+5}{2})$
= $\frac{x+5}{2} - 4$
= $\frac{x-3}{2}$

81.
$$(f \circ g)(x) = f(g(x))$$

= $f(2x - 5)$
= $(2x - 5) + 4$
= $2x - 1$
So, $(f \circ g)^{-1}(x) = \frac{x + 1}{2}$.

Note:
$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

So,
$$(g \circ f)^{-1}(x) = \frac{x-3}{2}$$
.

Note:
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

83. Let y = f(x) be one-to-one. Solve for x as a function of y. Interchange x and y to get $y = f^{-1}(x)$. Let the domain of f^{-1} be the range of f. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. Example:

$$f(x) = x^3; y = x^3; x = \sqrt[3]{y}; y = \sqrt[3]{x};$$

 $f^{-1}(x) = \sqrt[3]{x}$

- 84. The graphs of f and f^{-1} are mirror images with respect to the line y = x.
- **85.** f is not one-to-one because many different x-values yield the same y-value.

Example:
$$f(0) = f(\pi) = 0$$

Not continuous at
$$\frac{(2n-1)\pi}{2}$$
, where n is an integer.

86. *f* is not one-to-one because different *x*-values yield the same *y*-value.

Example:
$$f(3) = f(-\frac{4}{3}) = \frac{3}{5}$$

Not continuous at ± 2 .

- 87. $f(x) = k(2 x x^3)$ is one-to-one. Because $f^{-1}(3) = -2$, $f(-2) = 3 = k(2 (-2) (-2)^3) = 12k \implies k = \frac{1}{4}$.
- 88. (a) Since the slope of the tangent line to f at $\left(-1, -\frac{1}{2}\right)$ is $\frac{1}{2}$, the slope of the tangent line to f^{-1} at $\left(-\frac{1}{2}, 1\right)$ is $m = \frac{1}{\left(1/2\right)} = 2$.
 - (b) Since the slope of the tangent line to f at (2, 1) is 2, the slope of the tangent line to f^{-1} at (1, 2) is $m = \frac{1}{2}$.

89. False. Let
$$f(x) = x^2$$
.

92. False. Let
$$f(x) = x$$
 or $g(x) = 1/x$.

93. (a)
$$f(x) = 2x^3 + 3x^2 - 36x$$

f does not pass the horizontal line test.

(b)
$$f'(x) = 6x^2 + 6x - 36$$

= $6(x^2 + x - 6) = 6(x + 3)(x - 2)$
 $f'(x) = 0$ at $x = 2, -3$

On the interval (-2, 2), f is one-to-one, so, c = 2.

- 94. Let f and g be one-to-one functions.
 - (a) Let

$$f(g(x_1)) = (f \circ g)(x_2)$$

$$f(g(x_1)) = f(g(x_2))$$

$$g(x_1) = g(x_2) \qquad \text{(Because } f \text{ is one-to-one.)}$$

$$x_1 = x_2 \qquad \text{(Because } g \text{ is one-to-one.)}$$

So, $f \circ g$ is one-to-one.

(b) Let
$$(f \circ g)(x) = y$$
, then $x = (f \circ g)^{-1}(y)$. Also:
 $(f \circ g)(x) = y$
 $f(g(x)) = y$
 $g(x) = f^{-1}(y)$
 $x = g^{-1}(f^{-1}(y))$
 $x = (g^{-1} \circ f^{-1})(y)$
So, $(f \circ g)^{-1}(y) = (g^{-1} \circ f^{-1})(y)$ and
 $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

95. If f has an inverse, then f and f^{-1} are both one-to-one. Let $(f^{-1})^{-1}(x) = y$ then $x = f^{-1}(y)$ and f(x) = y. So, $(f^{-1})^{-1} = f$.

