Use congruent chords to find arc measures - To determine if two minor arcs are congruent, we need to see if the chords that create them are equal. - Theorem 6.5 In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. ## Examples In \bigcirc P, \overrightarrow{AD} and \overrightarrow{BC} are congruent. 1) If \overrightarrow{mAD} = 95°, find \overrightarrow{mBC} . 2) If $\widehat{\text{mAB}} = 45^{\circ}$ and $\widehat{\text{m CD}} = 35^{\circ}$, find $\widehat{\text{m BC}}$ ## Now You Try! In \bigcirc P, \overrightarrow{AD} and \overrightarrow{BC} are congruent. 1) If $\overrightarrow{mAD} = 105^{\circ}$, find \overrightarrow{mBC} . 2) If $\widehat{\text{mAB}} = 15^{\circ}$ and $\widehat{\text{mBC}} = 135^{\circ}$, find $\widehat{\text{mCD}}$ Properties of perpendicular bisectors of chords Theorem 6.7: If a diameter is perpendicular to another chord, then the diameter bisects the chord and its arc. In \bigcirc O, \overline{NL} is a diameter . \overline{KM} is a chord in the circle. \overline{mKL} is 30° Find: 1) mLM= 2) If $\overline{KP} = 12$, then solve for x if $\overline{PM} = x^2 - 4$ #### Congruent Chords - o So far, we have seen how congruent chords can be used to find congruent arc measures but we need to be able to figure out if they are congruent as well. - o Theorem 6.8 Two chords are congruent if and only if they are equidistant from the center. ### **Congruent Chords** If $\overline{FN}\cong\overline{FO}$, $m\angle N=90^\circ$, $m\angle O=90^\circ$ and $\overline{RP}=14$, find \overline{AQ} If FN = FO, $m \angle N = 90^{\circ}$ and $m \angle O = 90^{\circ}$ solve for x if