Warm Up

Find:

mAC: 70°

mCE: 90°

mED: 400

mAD: 160°

mACE: 1600

Use congruent chords to find arc measures

- To determine if two minor arcs are congruent, we need to see if the chords that create them are equal.
- Theorem 6.5 In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Examples

In OP, AD and BC are congruent.

1) If mAD = 95°, find mBC.

$$2x + 45 + 35 = 360$$
 $2x + 80 = 360$

$$2x + 80 = 360$$

$$\frac{2x}{2} = \frac{280}{2}$$

Now You Try!

In
$$\odot$$
 P, \overrightarrow{AD} and \overrightarrow{BC} are congruent.

1) If $\overrightarrow{mAD} = 105^{\circ}$, find \overrightarrow{mBC} .

(2) mAB = 15° and m BC = 135°, find mCD

$$x+15+135+135=360$$

 $x+285=360$
 -285 -285

$$x=75$$
 $mCO=75°$

Properties of perpendicular bisectors of chords

o Theorem 6.7: If a diameter is perpendicular to another chord, then the diameter bisects the chord and its arc.

Theorem 6.7

 Theorem 6.7 states that if a diameter is a perpendicular bisector of another chord, then it bisects both the chord and that chord's arc.

In \bigcirc O, \overline{NL} is a diameter . \overline{KM} is a chord in the circle. \overline{mKL} is 30°

Find:

1) $\widehat{\text{mLM}} = 30$ 2) If $\overline{\text{KP}} = 12$, then solve for x if $\overline{\text{PM}} = x^2 - 4$ 12=x-4 +4 +4

Congruent Chords

- So far, we have seen how congruent chords can be used to find congruent arc measures but we need to be able to figure out if they are congruent as well.
- Theorem 6.8 Two chords are congruent if and only if they are equidistant from the center.

same distance to the center

Congruent Chords

If $\overline{FN}\cong\overline{FO}$, $m\angle N=90^\circ$, $m\angle O=90^\circ$ and $\overline{RP}=14$, find \overline{AQ}

If FN=FO , m
$$\angle$$
N = 90° and m \angle O = 90° solve for x if RP = 9x + 21 and AQ = 14x - 9

$$9x+30 = 14x$$

$$-9x - 9x$$

X=6]