BC Calculus - 6.6 Notes – Integration by Parts

Integration by Parts (I.B.P.) -a method of integration useful for problems involving the product of two different types of functions . (example: logs and polynomial)

Integration by parts is typically used for the integration of the product of two functions.

$$\int f(x)g'(x) =$$

Integration by parts is based on the product rule:

$$[fg]' = f'g + fg'$$

Basic rule for choosing f and g':

- 1. For f: choose something that becomes simpler when you differentiate.
- 2. For g': choose something that can easily be integrated.

Steps:

- 1. Determine the u-value by using the acronym L.I.P.E.T.
 - a. LIPET shows the priority order for determining u-value
 - b. Logs Inverse Trig Polynomial Exponential function Trigonometric function
- Let dv be other function
- 3. Find u, dv, v, and dv
- 4. Plug into formula and integrate

Tabular Integration: Differentiate to 0 for the chosen f(x). Integrate your chosen g'(x) the same number of times. Follow the sign convention, which is plus/minus repeating.

2. $\int x^4 \sin x \, dx$

g'(x)f(x)

Practice Problems:

Integrate the following.				
1. $\int x \cos(x) dx$	$2. \int 2x \cos(3x+1) dx$			
3. $\int x^2 \sin(x) dx$	$4. \int 4x e^{3x+1} dx$			

5. $\int_{1}^{e^2} x^4 \ln x dx$	$6. \int \ln x dx$

7. $\int_{1}^{2} (3x^2 - 2x + 1) \ln x \, dx$

9. The table gives values of f, f', g, and g' for selected values of x. If $\int_0^3 f'(x)g(x) dx = 6$, then $\int_0^3 f(x)g'(x) dx = ?$

x	0	3
f(x)	1	5
f'(x)	5	-3
g(x)	-4	3
g'(x)	3	2

10. Let f be a twice-differentiable function with selected values of f and its derivatives shown in the table. What is the value of $\int_0^3 x f''(x) dx$?

x	f(x)	f'(x)	<i>f</i> "(<i>x</i>)
0	2	-2	5
3	5	7	-2

11. $\int x \cos 2x \, dx$

(A)
$$\frac{1}{2}x^2 \sin(2x) + C$$

(B) $\frac{1}{2}x^2 \cos(2x) + \frac{1}{2}\sin(2x) + C$
(C) $\frac{1}{2}x \sin(2x) - \frac{1}{4}\cos(2x) + C$
(D) $\frac{1}{2}x \sin(2x) + \frac{1}{4}\cos(2x) + C$

12. $\int_{1}^{e} x^{4} \ln x \, dx$

A)
$$\frac{6e^5-1}{25}$$
 (B) $\frac{4e^5+1}{25}$ (C) $\frac{1-e^3}{3}$ (D) e^4

13. Let f be a differentiable function such that $\int f(x) \cos x \, dx = f(x) \sin x - \int \frac{1}{2} x^3 \sin x \, dx$. Which of the following could be f(x).

A)
$$\frac{1}{2}\sin x$$
 (B) $\frac{1}{2}\cos x$ (C) $\frac{1}{8}x^4$ (D) $\frac{1}{2}x^3$