BC Calculus - 6.6 Notes - Integration by Parts

Integration by Parts (I.B.P.) -a method of integration useful for problems involving the product of two different types of functions. (example: logs and polynomial)

Integration by parts is typically used for the integration of the product of two functions.

$$
\int f(x) g^{\prime}(x)=
$$

Integration by parts is based on the product rule:

$$
[f g]^{\prime}=f^{\prime} g+f g^{\prime}
$$

Basic rule for choosing f and g^{\prime} :

1. For f : choose something that becomes simpler when you differentiate.
2. For g^{\prime} : choose something that can easily be integrated.

Steps:

1. Determine the u -value by using the acronym L.I.P.E.T.
a. LIPET shows the priority order for determining u-value
b. Logs Inverse Trig \underline{P} olynomial Exponential function Trigonometric function
2. Let $d v$ be other function
3. Find $u, d v, v$, and $d v$
4. Plug into formula and integrate

Tabular Integration: Differentiate to 0 for the chosen $f(x)$. Integrate your chosen $g^{\prime}(x)$ the same number of times. Follow the sign convention, which is plus/minus repeating.
2. $\int x^{4} \sin x d x$

$$
\begin{equation*}
f(x) \tag{x}
\end{equation*}
$$

Practice Problems:

Integrate the following.

1. $\int x \cos (x) d x$
2. $\int 2 x \cos (3 x+1) d x$
3. $\int x^{2} \sin (x) d x$
4. $\int 4 x e^{3 x+1} d x$
5. $\int_{1}^{e^{2}} x^{4} \ln x d x$
6. $\int \ln x d x$
7. $\int_{1}^{2}\left(3 x^{2}-2 x+1\right) \ln x d x$
8. $\int x^{3} e^{x} d x$
9. The table gives values of f, f^{\prime}, g, and g^{\prime} for selected values of x. If $\int_{0}^{3} f^{\prime}(x) g(x) d x=6$, then $\int_{0}^{3} f(x) g^{\prime}(x) d x=?$

x	0	3
$f(x)$	1	5
$f^{\prime}(x)$	5	-3
$g(x)$	-4	3
$g^{\prime}(x)$	3	2

10. Let f be a twice-differentiable function with selected values of f and its derivatives shown in the table. What is the value of $\int_{0}^{3} x f^{\prime \prime}(x) d x$?

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
0	2	-2	5
3	5	7	-2

11. $\int x \cos 2 x d x$
(A) $\frac{1}{2} x^{2} \sin (2 x)+C$
(B) $\frac{1}{2} x^{2} \cos (2 x)+\frac{1}{2} \sin (2 x)+C$
(C) $\frac{1}{2} x \sin (2 x)-\frac{1}{4} \cos (2 x)+C$
(D) $\frac{1}{2} x \sin (2 x)+\frac{1}{4} \cos (2 x)+C$
12. $\int_{1}^{e} x^{4} \ln x d x$
A) $\frac{6 e^{5}-1}{25}$
(B) $\frac{4 e^{5}+1}{25}$
(C) $\frac{1-e^{3}}{3}$
(D) e^{4}
13. Let f be a differentiable function such that $\int f(x) \cos x d x=f(x) \sin x-\int \frac{1}{2} x^{3} \sin x d x$. Which of the following could be $f(x)$.
A) $\frac{1}{2} \sin x$
(B) $\frac{1}{2} \cos x$
(C) $\frac{1}{8} x^{4}$
(D) $\frac{1}{2} x^{3}$
