1) Given the region below enclosed by $f(x)=\sqrt{x-2}, g(x)=5-x$, and the x-axis.
a) Find the area of the below region. (Write the integral notation(s) as well as the numeric approximation rounded to 3 decimal places)

b) Find the Volume of solid generated when the enclosed region is revolved about the line $x=1$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

c) The enclosed region is the base of a solid. The cross section of the solid taken perpendicular to the y axis is an equilateral triangle. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

2) Given the region below enclosed by $f(x)=\ln (4-x)$, the line $\mathrm{y}=1$, and the y -axis.
a) Find the Volume of solid generated when the enclosed region is revolved about the line $y=1$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

b) Find the Volume of solid generated when the enclosed region is revolved about the line $y=2$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

c) The enclosed region is the base of a solid. The cross section of the solid taken perpendicular to the x axis is a rectangle whose height is twice the base. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

7.1-7.2 Area \& Volume Formula Sheet

$$
\begin{aligned}
\text { Area }=\int_{x_{1}}^{x_{2}}(\text { Top graph }- \text { Bottom graph }) d x & \text { Area }= \\
\text { (in the forms of " } \mathrm{y}=\ldots \text { ") } & \int_{y_{1}}^{y_{2}}(\text { Right graph }- \text { Left graph }) d y \\
& \text { (in the form of " } \mathrm{x}=\ldots \text { ") }
\end{aligned}
$$

Disc Method: (Top - Bottom) - Vertical Radius Horizontal AOR

$$
V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2} d x
$$

(expression(s) used above has form: " $\mathrm{y}=\ldots$ ")

Disc Method: (Right - Left) - Horizontal Radius Vertical AOR

$$
V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2} d y
$$

(expression(s) used above has form: " $x=$ \qquad _")

Washer Method: (Top - Bottom), Vertical Radius (Horizontal AOR)

$$
V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2}-[r(x)]^{2} d x
$$

(expression(s) used above has form: " $\mathrm{y}=$ \qquad

Washer Method: (Right - Left), Horizontal Radius (Vertical AOR)
$V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2}-[r(y)]^{2} d y$
(expression(s) used above has form: " $\mathrm{x}=$ \qquad

$$
\begin{gathered}
\text { Top-Bottom Vertical base } \\
V=\int_{x_{1}}^{x_{2}}[\text { Area of cross section }] d x
\end{gathered}
$$

*Note: All values in integral are in terms of x (in the form of " $y=$ \qquad ")

Right-Left Horizontal base
$V=\int_{y_{1}}^{y_{2}}[$ Area of cross section $] d y$
*Note: All values in integral are in terms of y (in the forms of " $x=$ \qquad ")

Area formulas for Cross sections:

1. Square: $A=(\text { base })^{2}$	2.Isosceles Right Triangle (leg on base): $A=\frac{1}{2}(\text { base })^{2}$	3. $\underline{\text { Isosceles Right Triangle (hypotenuse on }}$ base): $A=\frac{1}{4}(\text { base })^{2}$
4. Rectangle: A= (base)(height)	5. $\underline{\text { Equilateral Triangle: }: ~} A=\frac{\sqrt{3}}{4}(\text { base })^{2}$	6. $\underline{\text { Semicircle: } A=\frac{\pi}{8}(\text { base })^{2}}$

