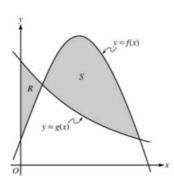
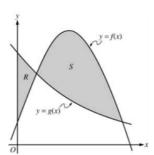

A.P. Calculus AB Chapter 7.-7.2 Area & Volume Unit Review WS #2

1)

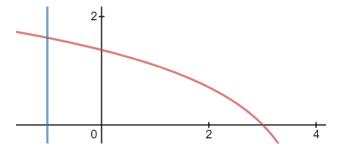
Let f and g be the functions given by $f(x) = \frac{1}{4} + \sin(\pi x)$ and $g(x) = 4^{-x}$. Let

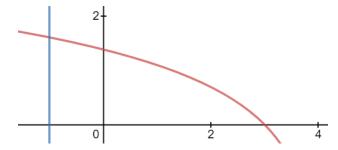

R be the shaded region in the first quadrant enclosed by the y-axis and the graphs of f and g, and let S be the shaded region in the first quadrant enclosed by the graphs of f and g, as shown in the figure above.

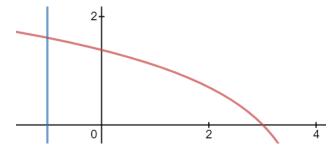
a) Find the area of S



b) Find the area of R


c) Find the volume of the solid generated when S is revolved about the horizontal line y = -1.


d) The enclosed region R is the base of a solid. The cross section of the solid taken <u>parallel</u> to the <u>y-axis</u> is a isosceles right triangle with leg on base. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)


- 2) Given the region below enclosed by $f(x) = \ln(4 x)$, the line x = -1, and the x-axis.
- a) Find the Volume of solid generated when the enclosed region is revolved about the line x = -1 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

b) Find the Volume of solid generated when the enclosed region is revolved about the line x = 4 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

c) The enclosed region is the base of a solid. The cross section of the solid taken <u>parallel to the x-axis</u> is a rectangle whose height is 4. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

7.1-7.2 Area & Volume Formula Sheet

$$Area = \int_{x_1}^{x_2} (Top \ graph - Bottom \ graph) dx \qquad Area = \int_{y_1}^{y_2} (Right \ graph - Left \ graph) dy$$
(in the forms of "y = __ ")
(in the form of "x = __ ")

$$Area = \int_{y_1}^{y_2} (Right \ graph - Left \ graph) dy$$
(in the form of "x = ___")

<u>Disc Method: (Top – Bottom) – Vertical Radius –</u> **Horizontal AOR**

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx$$

(expression(s) used above has form: " y = ____")

Disc Method: (Right - Left) - Horizontal Radius **Vertical AOR**

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$$

(expression(s) used above has form: "x = ___")

Washer Method: (Top - Bottom), Vertical Radius (Horizontal AOR)

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

(expression(s) used above has form: "y = ____")

Washer Method: (Right - Left), Horizontal Radius (Vertical AOR)

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 - [r(y)]^2 dy$$

(expression(s) used above has form: "x = ____")

Top-Bottom Vertical base

$$V = \int_{x_1}^{x_2} [Area \text{ of cross section}] dx$$

*Note: All values in integral are in terms of x (in the form of " $y = _$ ")

Right-Left Horizontal base

$$V = \int_{y_1}^{y_2} [Area \text{ of cross section}] dy$$

*Note: All values in integral are in terms of y (in the forms of "x =")

Area formulas for Cross sections:

1. Square:
$$A = (base)^2$$
 | 2. Isosceles Right Triangle (leg on base): $A = \frac{1}{2}(base)^2$ | 3. Isosceles Right Triangle (hypotenuse on base): $A = \frac{1}{4}(base)^2$ | 4. Rectangle: $A = (base)(height)$ | 5. Equilateral Triangle: $A = \frac{\sqrt{3}}{4}(base)^2$ | 6. Semicircle: $A = \frac{\pi}{8}(base)^2$