

Help session #1 Ch.7.1-7.2 WS

- 1. Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.
 - (a) Write an equation for the line tangent to the graph of f at $x = \frac{1}{2}$.
 - (b) Find the area of R.
 - (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.

a)
$$f(\frac{1}{2}) = 8(\frac{1}{2})^3 = 8(\frac{1}{8}) = 1$$

 $f'(\frac{1}{2}) = 24(\frac{1}{2})^2 = 24(\frac{1}{4}) = 6$

$$-\frac{1}{\pi}\cos(\pi x) - \frac{8x}{4}$$

$$f'(x) = 24x^2$$
 point: $(\frac{1}{2}, 1)$
 $y - y = m(x - x, 1)$
 $y - 1 = 6(x - 1/2)$

$$=\frac{1}{\pi}\cos(\pi/2)-2(1/2)^{2}-(-\frac{1}{\pi}\cos 0-0)$$

$$V=\pi \int_{0}^{1/2} \left[1-8x^{3}\right]^{2} - \left[1-\sin(\pi x)\right]^{2} dx$$

In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y = 4\ln(3 - x)$, the horizontal line y = 6, and the vertical line x = 2.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the horizontal line y = 8.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid.

A) Aven =
$$\int_{6}^{2} 6 - 4 \ln(3 - x) dx = \left[6.816 \right]$$

b)
$$R(x) = 8-4 \ln(3-x)$$
 $r(x) = 8-6=2$
* method $V = \pi \int_{0}^{2} \left[8-4 \ln(3-x) \right]^{2} - \left[2 \right]^{2} dx$

$$V = \pi \int_{0}^{2} \left[8 - 4 \ln(3 - x) \right]^{2} - \left[2 \right]^{2} dx = \left[53.533 \pi \right] = \left[53.533 \pi \right]$$

base = 6 -
$$4ln(3-x)$$

Area = $(base)^2$

Area = $[6-4ln(3-x)]^2$

$$V = \int_{0}^{2} [6-4ln(3-x)]^{2} dx$$

$$V = 26.266 \text{ unis}^{3}$$

Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4-2x, as shown in the figure above.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the x-axis.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

* washe Math

$$R(x) = 4 - 2x - 0$$

$$Y(x) = \frac{x^3}{1 + x^2} - 6$$

 $R(x) = 4-2x - 0 \qquad V = \pi \int [4-2x]^2 - [\frac{x^2}{1+x^2}] dx$ $Y(x) = \frac{x^3}{1+x^2} - 0 \qquad V = \pi \int [4-2x]^2 - [\frac{x^2}{1+x^2}] dx$

base =
$$4 - 2x - \frac{x^3}{1 + x^2}$$

Aven = $(base)^2$
Aven = $\left(4 - 2x - \frac{x^3}{1 + x^2}\right)^2$
 $\left(4 - 2x - \frac{x^3}{1 + x^2}\right)^2$

Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 - \cos x$, and the y-axis, as shown in the figure above.

- (a) Find the area of the region R.
- (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

a)
$$A = \int_{0}^{0.9419} e^{-x^{2}} (1 - \cos x) dx = 0.591 \int_{0.591}^{0.591} units^{2}$$

6) 1

* washer Method,

$$R(x) = e^{-x} - 0$$
 $Y(x) = 1 - \cos x - (0)$

$$V = \int_{0}^{0.9419} \left[e^{-x^{2}} + asy \right]^{3} dx = \left[0.461 \right]$$