$$Area = \int_{x_1}^{x_2} (Top \ graph - Bottom \ graph) \ dx$$

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the graph curve

Disc Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 dx$$

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the**further**graph curve radius <math>[r(x)] = distance from the AOR (Axis of Revolution) to the**closer**graph curve

Washer Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

1)

The diagram shows the curve $y = x^2 - 2x$ and the line y = 8.

- a) Calculate the intersections
- b) Calculate the shaded area. (Show work!)

2)

Find the volume of the solid created by revolving the curve $y = x^2 - 2x$ and the line y = 8 about the AOR line y = 8

Find the volume of the solid created by revolving the curve $y = x^2 - 2x$ and the line y = 8 about the AOR line y = -1

4)

Calculate the area of the shaded region. (Show work!)

5)

Find the volume of the solid created by revolving the shaded region about the AOR y = -3

Calculate the area of the shaded region (bounded by $y = 2x^2 - 6$ and $y = 10 - 2x^2$) . (Show work!)

7)

Find the volume of the solid created by revolving the shaded region (bounded by $y = 2x^2 - 6$ and $y = 10 - 2x^2$) about the AOR y = 10

8)

The diagram shows the shaded region bounded by $y = x^3 - 1$, y = 7, and x = 0.

- a) Calculate the intersections
- b) Calculate the shaded area. (Show work!)

9) The diagram shows the shaded region bounded by $y = x^3 - 1$, y = 7, and x = 0. Find the volume of the solid created by revolving the shaded region about the AOR of y = 3.

10) Find the area of the region bounded by the following graphs.

$$y = \sqrt{x}$$
, $x = 0$, and $y = 3$ (Show Work!)

11) Find the volume of the solid created by revolving region created by $y = \sqrt{x}$, x = 0, and y = 3 about the AOR y = 3 (Show Work!)

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the graph curve

Disc Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 dx$$

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the**further**graph curveradius $[r(x)] = distance\ from\ the\ AOR\ (Axis\ of\ Revolution)$ to the **closer** graph curve

Washer Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

1)

The diagram shows the curve $y = x^2 - 2x$ and the line y = 8.

- a) Calculate the intersections
- b) Calculate the shaded area. (Show work!)

#intersection Calculate the Galactic form
$$(x^2 - 2x = 8)$$
 $(x^2 - 2x - 8 = 0)$
 $(x - 4)(x + 2) = 0$
 $(x = 4, x = -2)$

#Intersection

a)
$$x^2 - 2x = 8$$
 $x^2 - 2x - 8 = 0$
 $(x - 4)(x + 2) = 0$
 $x = 4, x = -2$

$$= 32 - \frac{4^3}{3} + 4^2 - (-16 + \frac{8}{3} + 4)$$

$$= 36 \quad \text{units}^2$$

2) *Disc Method

Find the volume of the solid created by revolving the curve $y = x^2 - 2x$ and the line y = 8 about the AOR line y =8

$$R(x)=8-(x^2-2x)=8-x^2+2x$$

$$V = \pi \int_{-\infty}^{4} [8 - 2 + 2x] dx$$

4)

*intersection

Calculate the area of the shaded region. (Show

5)

Find the volume of the solid created by revolving the shaded region about the AOR y = -3

$$R(x) = 2x^{2} + 2x - (-3) = 2x^{2} + 2x + 3$$

$$r(x) = x^{3} + x^{2} - (-3) = x^{3} + x^{2} + 3$$

$$V = \gamma + \int_{0}^{2} \left[2x^{2} + 2x + 3 \right]^{2} - \left[x^{3} + x^{2} + 3 \right] dx$$

$$V = 38.248 + or \frac{4016}{105} + units$$

Find the volume of the solid created by revolving the shaded region (bounded by $y = 2x^2 - 6$ and $y = 10 - 2x^2$) about the AOR y = 10 $R(x)=10-(2x^2-6)=10-2x^2+6=16-2x^2$

 $r(x) = 10 - (10 - 2x^2) = 2x^2$

V=77 [16-2x2]- [2x2]2/x

The diagram shows the shaded region bounded by $y = x^3 - 1$, y = 7, and x = 0.

- a) Calculate the intersections
- b) Calculate the shaded area. (Show work!)

bound: x3-1=7 X=38=2

ded area. (Show work!)
$$A = \int_{0}^{2} 7 - (x^{3} - 1) dx$$

$$\int_{0}^{2} 7 - x^{3} + 1 dx$$

$$R(x) = 8 - (x^{3} - 1) = 8 - x^{3} + 1 = 9 - x^{3}$$

 $r(x) = 8 - 7 = 1$

$$V = Tr \int_{0}^{2} 9 - x^{3} \int_{0}^{2} - \left[1\right]^{2} dx = 106.286\pi$$
or $\frac{744}{7}$

10) Find the area of the region bounded by the following graphs.
$$y = \sqrt{x}$$
, $x = 0$, and $y = 3$ (Show Work!)

#intersection
$$(\sqrt{x}=3 \mid x=9)$$

$$(\sqrt{x}=(3)^2 \mid x=9)$$

$$A = \int_{0}^{9} 3 - \int x dx$$

$$\int 3 - x'^{2} dx$$

$$3x - \frac{x}{3/2} = 3x - \frac{2}{3}x^{3/2}$$

$$= 27 - \frac{2}{3}(9)^{3/2} - (0 - 0)$$

$$= 27 - \frac{2}{3}(27)$$

$$= 27 - 18 = 9 \text{ units}^{3/2}$$

1y=x3-1

11) Find the volume of the solid created by revolving region created by
$$y = \sqrt{x}$$
, $x = 0$, and $y = 3$ about the AOR y = 3 (Show Work!)

Disc Method
$$R(x) = 3 - \sqrt{x}$$

and
$$y = 3$$
 about the AOR $y = 3$ (Show Work!)
$$V = \pi \int_{0}^{9} \left[3 - J_{x}\right]^{2} dx$$

$$V = \pi \int_{0}^{9} -6J_{x} + x dx$$

$$T \int_{0}^{9} -6J_{x} + x dx$$

$$9x - \frac{6x^{3/2}}{3/2} + \frac{x^{2}}{2}$$

$$9x - 4x^{3/2} + \frac{x^{2}}{2}$$

$$81 - 4(9)^{3/2} + \frac{8}{2} - (0 - 0 + 0)$$

$$+ 13.5\pi \text{ or } \frac{27}{2} \pi \text{ units}^{3}$$