7.2abc Volumes with Disc, Washer, Cross Section Problems Worksheet 2

Disc Method:

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx \quad \text{or} \quad V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$$

Washer Method:

$$V = \pi \int_{x_1}^{x_2} [R(x)^2 - r(x)^2] dx \text{ or } V = \pi \int_{y_1}^{y_2} [R(y)^2 - r(y)^2] dy$$

1. Find the volume of the solid created by rotating the region bounded by y = 2x - 4, y = 0, and x = 3 about the x-axis.

2. Find the volume of the solid created by rotating the region bounded by $y = 2x^2 - 3$, y = -3, and x = 2 about the line x = -1.

3. Find the volume of the solid created by rotating the region bounded by $y = 2x^2 - 3$, y = -3, and x = 2 about the line y = 7.

4.	Find the volume of the solid whose base is bounded by $y = x + 1$ and $y = x^2 - 1$, the	ne cross
	sections parallel to the y-axis are:	

a) Rectangles of height 5

b) Equilateral triangles

5. Find the volume of the solid whose base is bounded by x = 0, y = 0, and $y = \frac{4}{3}x - 3$ the cross sections perpendicular to the y-axis are:

a) Semicircles

b) Isosceles right triangles with hypotenuse on the base

7.2abc Volumes with Disc, Washer, Cross Section Problems Worksheet 2

Disc Method:

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx \quad \text{or} \quad V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$$

Washer Method:

$$V = \pi \int_{x_1}^{x_2} [R(x)^2 - r(x)^2] dx \text{ or } V = \pi \int_{y_1}^{y_2} [R(y)^2 - r(y)^2] dy$$

1. Find the volume of the solid created by rotating the region bounded by y = 2x - 4, y = 0, and x = 3 about the x-axis. Disc Method, Top/Bottom

$$\int_{0}^{3} (2x-4)^{2} dx = \frac{4\pi}{2} \qquad 2x = 4$$

$$R(x) = 2x - 4 - 0 = 2x - 4$$

$$V = \pi \int R(x)^{2} dx$$

$$= \frac{2x-4=0}{2x-4}$$

$$= \frac{2x-4=0}{2x-4}$$

$$= \frac{2x-4=0}{2x-4}$$

$$= \frac{4\pi}{3} \text{ units}^{3}$$

$$= \frac{4\pi}{3} \text{ units}^{3}$$

2. Find the volume of the solid created by rotating the region bounded by $y = 2x^2 - 3$, y = -3, and x = 2 about the line x = -1. Washer Method, Right/Left

$$r(y) = \sqrt{\frac{y+3}{2}} - (-1) = \sqrt{\frac{y+3}{2}} + 1$$

$$\sqrt{\frac{1}{2} + 1}$$
 $\sqrt{\frac{5}{3^2 - \sqrt{\frac{43}{3} + 1}}}$

* right bound

V=
$$\pi \int_{2}^{5} 3^{2} - \left[\sqrt{\frac{y+3}{2}} + 1\right]^{2} dy$$
 $\sqrt{\frac{3+y}{2}} = 2 \quad y=5$
 $\sqrt{\frac{3+y}{2}} = 4$
 $\sqrt{\frac{3+y}{2}} = 4$

3. Find the volume of the solid created by rotating the region bounded by $y = 2x^2 - 3$, y = -3, and x = 2 about the line y = 7. Washer Method, Top/Bottom

$$R(x) = 7 - (-3) = 10$$

$$r(x) = 7 - (2x^2 - 3) = 10 - 2x^2$$

$$V = \pi \int_{0}^{2} 10^{2} - \left[10 - 2x^{2}\right]^{2} dx$$

$$V = \frac{1216}{15} \pi \text{ units}^{3}$$

$$\pi \int_{0}^{2} \left[10^{2} - \left(7 - \left(2x^{2} - 3 \right) \right)^{2} \right] dx = \frac{1216\pi}{15}$$

4. Find the volume of the solid whose base is bounded by y = x + 1 and $y = x^2 - 1$, the cross sections parallel to the y-axis are: Top/Bottom

Base =
$$x+1-(x^2-1) = x+1-x^2+1 = -x^2+x+2$$

* Find intersections/bounds:
$$x^2-1=x+1$$

 $x^2-x-2=0$

- * Find intersections/bounds: $x^2-1=x+1$ (x-2)(x+1)=0 $x^2-x-2=0$ (x=2,-1)
- a) Rectangles of height 5 Area = (base) (height)

Area =
$$(-x^2+x+2)(5)$$

$$V = \int_{-\infty}^{2} 5(-x^2 + x + 2) dx$$

b) Equilateral triangles

$$A = \frac{\sqrt{3}}{4} (base)^2$$

$$A = \frac{\sqrt{3}}{4} (base)^2$$

$$V = \frac{\sqrt{3}}{4} \int_{-1}^{2} (-x^2 + x + 2) dx$$

5. Find the volume of the solid whose base is bounded by x = 0, y = 0, and $y = \frac{4}{3}x - 3$ the cross sections perpendicular to the y-axis are:

Base =
$$\frac{3}{4}y + \frac{9}{4} - 0$$

= $\frac{3}{4}y + \frac{9}{4}$

a) Semicircles

$$A = \frac{\pi}{8} \left[base \right]^2 = \frac{\pi}{8} \left[\frac{3}{4} y + \frac{9}{4} \right]^2$$

$$V = \frac{\pi}{8} \int_{-3}^{6} \left[\frac{3}{4} y + \frac{9}{4} \right]^{2} dy$$

b) Isosceles right triangles with hypotenuse on the base

$$V = \frac{1}{4} [base]^2 = \frac{1}{4} [\frac{3}{4}y + \frac{9}{4}]^2$$

$$V = \frac{1}{4} \int_{-3}^{0} \left[\frac{3}{4} y^{+} \frac{9}{4} \right]^{2} dy$$