## 7.2a Disc Method Practice Problems Worksheet



1. Let the region R be the area enclosed the function  $f(x) = 2x^3$  the horizontal line y=8, and the y-axis. Find the volume of the solid generated when the shaded region is:

## a) rotated about the line y = 8

b) rotated about the y-axis





2) Let the region R be the area enclosed the function  $f(x) = e^x + 2$ , the horizontal line y=7, and the y-axis. Find the volume of the solid generated when the shaded region is:





b) rotated about the y-axis



| <u>Disc Method: (Top – Bottom)</u>                                                | <u>Disc Method: (Right – Left )</u>                                               |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| $V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx$ (expression(s) used above has form: "y =") | $V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$ (expression(s) used above has form: "x =") |

3) Let the region R be the area enclosed by the function  $f(x) = x^3 + 2$ , the horizontal line y=2, and the vertical lines x=0 and x=2. Find the volume of the solid generated when shaded region is:

## a) rotated about the line y = 2

b) rotated about x = 2





4. Let the region R be the area enclosed the function  $f(x) = 2x^{\frac{1}{3}}$ , the horizontal line y=2, and the y-axis. Find the volume of the solid generated when shaded region is





## b) rotated about y-axis

