AP Calculus Ch. 7.2b: Volume by Washer Method Notes

Reviewing Disc Method

Disc Method: $V=\pi \int_{x_{1}}^{x_{2}}[R(x)] d x$

Illustration of Washer Method

Washer Method: (Right - Left), Horizontal Radius $V=\pi \int_{y_{1}}^{\frac{\text { (Vertical AOR) }}{y_{2}}[R(y)]^{2}-[r(y)]^{2} d y}$ (expression(s) used above has form: "x = __")

Radius [R(x) or R(y)] - distance from the AOR (Axis of Revolution) to the outer(further)curve radius $[r(x)$ or $r(y)]$ - distance from the AOR (Axis of Revolution) to the inner(closer) curve

Example 1: Find the volume of the solid enclosed by the graphs of $y=x^{2}$ and $y=\sqrt{x}$, and revolving about the x -axis.

Example 2: Find the volume of the solid created by revolving the function $y=x^{2}+1$ bounded by the line $y=2$ revolved about the x-axis.

Washer Method: (Top - Bottom), Vertical Radius
 $$
V=\pi \frac{(\text { Horizontal AOR) }}{\int_{x_{1}}^{x_{2}}[R(x)]^{2}-[r(x)]^{2} d x}
$$
 Washer Method: (Right - Left), Horizontal Radius
 $V=\pi \int_{y_{1}}^{\frac{(\text { Vertical AOR) }}{y_{2}}[R(y)]^{2}-[r(y)]^{2} d y}$
 (expression(s) used above has form: " $\mathrm{x}=$ __")

(expression(s) used above has form: " $\mathrm{y}=$ ")
Radius [$R(x)$ or $R(y)$] - distance from the AOR (Axis of Revolution) to the outer(further)curve radius[$\mathrm{r}(\mathrm{x})$ or $\mathrm{r}(\mathrm{y})$] - distance from the AOR (Axis of Revolution) to the inner(closer) curve

Example 3: Find the volume of the solid created by revolving the function $y=x^{2}+1$ bounded by the line $y=2$ and the y-axis about the line $y=4$

Example 4: Find the volume of the solid created enclosed region of $y=x^{2}$ and $y=\sqrt{x}$ revolving about the line $x=-2$

