Reviewing Disc Method

Illustration of Washer Method

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the further graph curve radius <math>[r(x)] = distance from the AOR (Axis of Revolution) to the closer graph curve

Washer Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

Example 1: Find the volume of the solid created enclosed region of $y = x^2$ and $y = \sqrt{x}$ revolving about the x-axis

Example 2: Find the volume of the solid created by revolving the function $y = x^2 + 1$ bounded by the line y = 2 revolved about the x-axis.

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the further graph curve radius <math>[r(x)] = distance from the AOR (Axis of Revolution) to the closer graph curve

Washer Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

Example 3: Find the volume of the solid created by revolving the function $y = x^2 + 1$ bounded by the line y = 2 and the y-axis about the line y = 4

Example 4: Find the volume of the solid created enclosed region of $y = x^2$ and $y = \sqrt{x}$ revolving about the line y = 1

Radius [R(x)] = distance from the AOR (Axis of Revolution) to the further graph curve radius [r(x)] = distance from the AOR (Axis of Revolution) to the closer graph curve

Washer Method: Volume =
$$\pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

Example 3: Find the volume of the solid created by revolving the function $y = x^2 + 1$ bounded by the line y = 2 and the y-axis about the line y = 4

(