Cross-section is the shape that results if we cut the object in half and look at the resulting shape sideways:

Disc Method

Washer Method

The volume problems we have covered so far(Disc, Washer) have involved taking the shaded region and rotate it about a center, (AOR), resulting in circular Area, either Area $=\pi[R(x)]^{2}$ or Area $=\pi[R(x)]^{2}-\pi[r(x)]^{2}$

Now, we still have a shaded region, but now it will act as the base of the 3D object. We will now build the crosssection area on top of this base. (no longer rotating around an axis)

Area formulas for Cross sections:

1. Square: $A=(\text { base })^{2}$	2. Isosceles Right Triangle (leg on base): $A=\frac{1}{2}(\text { base })^{2}$	3. Isosceles Right Triangle (hypotenuse on base): $A=\frac{1}{4}(\text { base })^{2}$
4. Rectangle:	5. Equilateral Triangle: $A=\frac{\sqrt{3}}{4}(\text { base })^{2}$	6. $\underline{\text { Semicircle: } A=\frac{\pi}{8}(\text { base })^{2}}$
A = (base)(height)		

Example 1: Find the volume of the solid if the base is bounded by curve $y=\sqrt{1-x^{2}}, y=0, x=0$ (in the first quadrant) and the cross sections are squares parallel to the y-axis.

Top-Bottom Vertical base	Right-Left Horizontal base		
$V=\int_{x_{1}}^{x_{2}}[$ Area of cross section $] d x$	$V=\int_{y_{1}}^{y_{2}}[$ Area of cross section $] d y$		
*Note: All values in integral are in terms of x			
(equations in the form of " $\mathrm{y}=\ldots \ldots$)		\quad	*Note: All values in integral are in terms of y
:---:			
(equations in the form of " $\mathrm{x}=\ldots$			

Area formulas for Cross sections:

1. Square: $A=(\text { base })^{2}$	2. Isosceles Right Triangle (leg on base): $A=\frac{1}{2}(\text { base })^{2}$	3. Isosceles Right Triangle (hypotenuse on base): $A=\frac{1}{4}(\text { base })^{2}$
4. Rectangle: $A=($ base $)($ height $)$	5. Equilateral Triangle: $A=\frac{\sqrt{3}}{4}(\text { base })^{2}$	$6 . \underline{\text { Semicircle: } A=\frac{\pi}{8}(\text { base })^{2}}$

Example 2: Find the volume of the solid if the base is bounded by the curve $y=x^{2}$ and the line $y=4$ and the cross sections are isosceles right triangles whose hypotenuse lie on the base and are parallel to the x -axis.

Example 3: Find the volume of the solid if the base is bounded by the curve $y=x^{2}$ and the line $y=4$ and the cross sections are semicircles whose base are perpendicular to the y-axis.

Example 4: Let the region R be the area enclosed by the function $f(x)=\ln x$ and $g(x)=\frac{1}{2} x-1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in the region R , find the volume of the solid.

