AP Calculus Ch. 7.2c Volumes with Known Cross Section

<u>Cross-section</u> is the shape that results if we cut the object in half and look at the resulting shape sideways:

Disc Method

Washer Method

The volume problems we have covered so far(Disc, Washer) have involved taking the shaded region and rotate it about a center, (AOR), resulting in circular Area, either $Area = \pi [R(x)]^2$ or $Area = \pi [R(x)]^2 - \pi [r(x)]^2$

Now, we still have a shaded region, but now it will act as the base of the 3D object. We will now build the cross-section area on top of this base. (no longer rotating around an axis)

Area formulas for Cross sections:

	2. Isosceles Right Triangle (leg on base):	3. Isosceles Right Triangle (hypotenuse on
	$A = \frac{1}{2}(base)^2$	<u>base</u>): $A = \frac{1}{4}(base)^2$
4. <u>Rectangle</u> : A = (base)(height)	5. <u>Equilateral Triangle</u> : $A = \frac{\sqrt{3}}{4}(base)^2$	6. <u>Semicircle</u> : $A = \frac{\pi}{8}(base)^2$

Example 1: Find the volume of the solid if the base is bounded by curve $y = \sqrt{1 - x^2}$, y = 0, x = 0 (in the first quadrant) and the cross sections are squares parallel to the y-axis.

Top-Bottom Vertical base	Right-Left Horizontal base	
$V = \int_{x_1}^{x_2} [Area \text{ of cross section}] dx$	$V = \int_{y_1}^{y_2} [Area \text{ of cross section}] dy$	
*Note: All values in integral are in terms of x	*Note: All values in integral are in terms of y	
(equations in the form of " y =")	(equations in the form of " x =")	
rea formulas for Cross sections:	·	
1. <u>Square</u> : $A = (base)^2$ 2. <u>Isosceles Right Triangle</u> $A = \frac{1}{2}(base)^2$	(leg on base): 3. Isosceles Right Triangle	
$A = \frac{1}{2}(base)^2$	(hypotenuse on base): $A = \frac{1}{4}(base)^2$	

	$A = \frac{1}{2}(base)^2$	(hypotenuse on base): $A = \frac{1}{4}(base)^2$
4. <u>Rectangle</u> : A = (base)(height)	5. <u>Equilateral Triangle</u> : $A = \frac{\sqrt{3}}{4}(base)^2$	6. <u>Semicircle</u> : $A = \frac{\pi}{8}(base)^2$

Example 2: Find the volume of the solid if the base is bounded by the curve $y = x^2$ and the line y = 4 and the cross sections are isosceles right triangles whose hypotenuse lie on the base and are parallel to the x-axis.

Example 3: Find the volume of the solid if the base is bounded by the curve $y = x^2$ and the line y = 4 and the cross sections are semicircles whose base are perpendicular to the y-axis.

Example 4: Let the region R be the area enclosed by the function $f(x) = \ln x$ and $g(x) = \frac{1}{2}x - 1$. If the region R is the base of a solid such that each cross section perpendicular to the *x*-axis is an isosceles right triangle with a leg in the region R, find the volume of the solid.

