
BC Calculus - 7.4 Notes - Euler's Method

In lesson 7.6, we will show how to find a solution y = f(x) to a differential equation. In this lesson, we are going to APPROXIMATE a solution to a differential equation. This approximation method is called **Euler's method**.

Step 1: Construct a tangent line at (0,0) for $0 \le x \le 0.5$.

Starting point was (0,0). New point to work with is

Step 2: Construct a tangent line at for $0.5 \le x \le 1$.

Starting point was New point to work with is

Step 3: Construct a tangent line at for $1 \le x \le 1.5$.

Starting point was New point to work with is

Here is a way Euler Method questions often appear on the AP Exam.

2. $\frac{dy}{dx} = 2x$ and let f(x) = y be a solution to this differential equation. If f(1) = 3, what is the approximation to f(2) obtained by using Euler's method with 5 steps of equal size?

First, find the step size. $\Delta x =$

$$y - y_1 = m(x - x_1)$$

$$y = y_1 + m(x - x_1)$$

x	у	<i>y</i> ′	New y

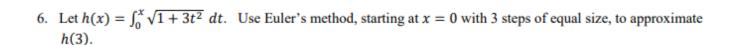
Practice problems:

1. The table below gives the values of f', the derivative of f. If f(1) = 2, what is the approximation to f(2.5) obtained by using Euler's method with 3 steps of equal size?

x	1	1.5	2.0	2.5
f'(x)	0.3	0.7	1.2	1.8

2. The table below gives the values of f', the derivative of f. If f(2) = 3, what is the approximation to f(2.6) obtained by using Euler's method with 2 steps of equal size?

Ĩ			2.2	2.6
- 1	x	2	2.3	2.6
	f'(x)	-0.5	-0.3	-0.1


3. The table below gives the values of f', the derivative of f. If f(3) = 5, what is the approximation to f(4.0) obtained by using Euler's method with 2 steps of equal size?

_							
	x	3	3.25	3.5	3.75	4.0	4.25
	f'(x)	0.1	0.3	0.5	0.7	0.9	1.1

4. The table below gives the values of f', the derivative of f. If f(1.5) = 4, what is the approximation to f(1) obtained by using Euler's method with 2 steps of equal size?

x	1	1.25	1.5	1.75	2.0
f'(x)	0.3	0.4	0.6	0.9	1.3

5. Let $h(x) = \int_1^x \sqrt{1+t^2} dt$. Use Euler's method, starting at x = 1 with 2 steps of equal size, to approximate h(3).

7. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = 2x - y$ with initial condition f(1) = 0. What is the approximation for f(1.3) obtained using Euler's method with 3 steps of equal length, starting at x = 1?

8. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = -\frac{x}{y}$ with initial condition f(0) = 1. What is the approximation for f(0) obtained using Euler's method with 3 steps of equal length, starting at x = 0?

9. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = y$ with initial condition f(0) = 1. What is the approximation for f(.5) obtained using Euler's method with a step size of $\Delta x = 0.1$, starting at x = 0?

10. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x + y$ with initial condition f(0) = 1. What is the approximation for f(.8) obtained using Euler's method with 4 steps of equal length, starting at x = 0?