7.5 Homework – <u>Logistic Models with Differential Equations</u>

Pg. 565-566 #5, 9, 11, 15, 17, 19, 21, 25, 27, 29, 33

In Problems 5-10, for each logistic function P, identify

- (a) the carrying capacity M.
- (b) the maximum population growth rate k.
- (c) the initial population $P_0 = P(0)$.
- (d) the population P when P is growing most rapidly.

5.
$$P(t) = \frac{5500}{1 + 99e^{-0.02t}}$$

- 5. To analyze the logistic function P, compare $P(t) = \frac{5500}{1+99e^{-0.02t}}$ to $P(t) = \frac{M}{1+ae^{-kt}}$
 - (a) M = 5500 is the carrying capacity.
 - (b) k = 0.02 is the maximum population growth rate.
 - (c) $P_0 = P(0)$ is found by evaluating the logistic function at t = 0.

$$P(0) = \frac{5500}{1 + 99e^{-0.02(0)}} = \frac{5500}{100} = 55$$

(d) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{5500}{2} = 2750$

9.
$$P(t) = \frac{150}{1 + 2e^{-0.2t}}$$

To analyze the logistic function P, compare $P(t) = \frac{150}{1+2e^{-0.2t}}$ to $P(t) = \frac{M}{1+ae^{-kt}}$

- (a) M = 150 is the carrying capacity.
- (b) k = 0.2 is the maximum population growth rate.
- (c) $P_0 = P(0)$ is found by evaluating the logistic function at t = 0.

$$P(0) = \frac{150}{1 + 2e^{-0.2(0)}} = \frac{150}{3} = 50$$

(d) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{150}{2} = 75$

In Problems 11–20, the given logistic differential equation models the rate of change of a population P with respect to time t. For each differential equation, find

- (a) the carrying capacity M.
- (b) the maximum population growth rate k.
- (c) the population when P is growing most rapidly.

11.
$$\frac{dP}{dt} = 0.12P \left(1 - \frac{P}{1000} \right)$$

To analyze the logistic differential equation $\frac{dP}{dt} = 0.12P \left(1 - \frac{P}{1000}\right)$, compare it to the logistic differential equation $\frac{dP}{dt} = kP \left(1 - \frac{P}{M}\right)$

- (a) M = 1000 is the carrying capacity.
- (b) k = 0.12 is the maximum population growth rate.
- (c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{1000}{2} = 500$

15.
$$\frac{dP}{dt} = 0.002P \left(1 - \frac{P}{2800} \right)$$

To analyze the logistic differential equation $\frac{dP}{dt} = 0.002P \left(1 - \frac{P}{2800}\right)$, compare it to the logistic differential equation $\frac{dP}{dt} = kP \left(1 - \frac{P}{M}\right)$.

- (a) M = 2800 is the carrying capacity.
- (b) k = 0.002 is the maximum population growth rate.
- (c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{2800}{2} = 1400$

17.
$$\frac{dP}{dt} = 0.00003P(1000 - P)$$

To analyze the logistic differential equation $\frac{dP}{dt} = 0.00003P(1000 - P)$, compare it to the logistic differential equation $\frac{dP}{dt} = \frac{k}{M}P(M-P)$

- (a) M = 1000 is the carrying capacity.
- (b) $\frac{k}{1000} = 0.00003 \ k = 0.03$ is the maximum population growth rate.
- (c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{1000}{2} = 500$

$$\frac{dP}{dt} = 0.0002P(1200 - P)$$

To analyze the logistic differential equation $\frac{dP}{dt} = 0.0002P(1200 - P)$, compare it to the logistic differential equation $\frac{dP}{dt} = \frac{k}{M}P(M-P)$

- (a) M = 1200 is the carrying capacity.
- (b) $\frac{k}{1200} = 0.0002 \ k = 0.24$ is the maximum population growth rate.
- (c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{1200}{2} = 600$

 $\frac{\ln P_{roblems}}{\ln P_{roblems}}$ 21 and 22, write the logistic differential equation $\frac{dP}{dt}$

$$P(t) = \frac{2100}{1 + 29e^{-0.15t}}$$

To analyze the logistic equation $P(t) = \frac{2100}{1+29e^{-0.15t}}$, compare it to the logistic equation $P(t) = \frac{M}{1+ae^{-kt}}$ where P(t) is the population at time t, M is the carrying capacity, k is the maximum population growth rate, $P_0 = P(0)$, and $a = \frac{M-P_0}{P_0}$.

Once we identify k and M we can substitute them into the logistic differential equation $\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right)$.

For $P(t) = \frac{2100}{1+29e^{-0.15t}}$, M = 2100, a = 29, and k = 0.15.

So the logistic differential equation is $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{2100}\right)$

In Problems 29 and 30, for each logistic function find the population when it is growing most rapidly.

29.
$$P(t) = \frac{100}{1 + 2e^{-0.2t}}$$

To analyze the logistic function P, compare $P(t) = \frac{100}{1+2e^{-0.02t}}$ to $P(t) = \frac{M}{1+ae^{-kt}}$ The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2} = \frac{100}{2} = \boxed{50}$

- 33. Spread of Flu Suppose one person with the flu is placed in a group of 49 people without the flu. The rate of change of those with the flu with respect to time t (in days) is proportional to the product of the number of those with the flu and the number without flu.
 - (a) If P is the number of people with the flu and the maximum daily population growth rate is 15%, write a differential equation that models the experiment.
 - (b) Write the logistic function that satisfies the differential equation.
 - (c) Find the time it takes for $\frac{1}{2}$ the population to become infected.
 - (d) How long does it take for 80% of the population to become infected?
- (a) Since the rate of change of the number of people with the flu P with respect to time t (in days) is proportional to the product of P and 50 P, the differential equation can be written as $\frac{dP}{dt} = CP(50 P)$. The differential equation can also be written in the form $\frac{dP}{dt} = kP(1 \frac{P}{M})$ where M = 50 is the carrying capacity and k = 0.15 is the maximum growth rate. The differential equation becomes $\frac{dP}{dt} = 0.15P(1 \frac{P}{50})$ with P(0) = 1.
- (b) The initial number of people with the flu is $P_0 = 1$. The solution to the differential equation $\frac{dP}{dt} = kP\left(1 \frac{P}{M}\right)$ is $P(t) = \frac{M}{1 + ae^{-kt}}$ where k = 0.15, M = 50, and $a = \frac{M P_0}{P_0} = \frac{50 1}{1} = 49$. Therefore, $P(t) = \frac{50}{1 + 49e^{-0.15t}}$.
 - (c) Find t so that P(t) = 25.

$$\frac{50}{1+49e^{-0.15t}} = 25$$

$$e^{-0.15t} = \frac{\frac{50}{25} - 1}{49}$$

$$-0.15t = \ln\left(\frac{\frac{50}{25} - 1}{49}\right)$$

$$t = -\frac{1}{0.15}\ln\left(\frac{1}{49}\right) = \frac{1}{0.15}\ln 49 \approx 29.945 \text{ days}.$$

- 33. Spread of Flu Suppose one person with the flu is placed in a group of 49 people without the flu. The rate of change of those with the flu with respect to time t (in days) is proportional to the product of the number of those with the flu and the number without flu.
- (d) How long does it take for 80% of the population to become infected?
- (d) Find t so that P(t) = 0.80(50).

$$\frac{50}{1 + 49e^{-0.15t}} = 40$$

$$e^{-0.15t} = \frac{\frac{50}{40} - 1}{49}$$

$$-0.15t = \ln\left(\frac{0.25}{49}\right)$$

$$t = -\frac{1}{0.15}\ln\left(\frac{0.25}{49}\right) \approx 35.187 \text{ days}$$