7.5 Homework - Logistic Models with Differential Equations

Pg. 565-566 \#5, 9, 11, 15, 17, 19, 21, 25, 27, 29, 33
In Problems 5-10, for each logistic function P, identify
(a) the carrying capacity M.
(b) the maximum population growth rate k.
(c) the initial population $P_{0}=P(0)$.
(d) the population P when P is growing most rapidly.
5. $P(t)=\frac{5500}{1+99 e^{-0.02 t}}$
5. To analyze the logistic function P, compare $P(t)=\frac{5500}{1+99 e^{-0.02 t}}$ to $P(t)=\frac{M}{1+a e^{-k t}}$
(a) $M=5500$ is the carrying capacity.
(b) $k=0.02$ is the maximum population growth rate.
(c) $P_{0}=P(0)$ is found by evaluating the logistic function at $t=0$.

$$
P(0)=\frac{5500}{1+99 e^{-0.02(0)}}=\frac{5500}{100}=55
$$

(d) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{5500}{2}=2750$

$$
\text { 9. } P(t)=\frac{150}{1+2 e^{-0.2 t}}
$$

To analyze the logistic function P, compare $P(t)=\frac{150}{1+2 e^{-0.2 t}}$ to $P(t)=\frac{M}{1+a e^{-k t}}$
(a) $M=150$ is the carrying capacity.
(b) $k=0.2$ is the maximum population growth rate.
(c) $P_{0}=P(0)$ is found by evaluating the logistic function at $t=0$.

$$
P(0)=\frac{150}{1+2 e^{-0.2(0)}}=\frac{150}{3}=50
$$

(d) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{150}{2}=75$

In Problems 11-20, the given logistic differential equation models the rate of change of a population P with respect to time t. For each differential equation, find
(a) the carrying capacity M.
(b) the maximum population growth rate k.
(c) the population when P is growing most rapidly.
11. $\frac{d P}{d t}=0.12 P\left(1-\frac{P}{1000}\right)$

To analyze the logistic differential equation $\frac{d P}{d t}=0.12 P\left(1-\frac{P}{1000}\right)$, compare it to the logistic differential equation $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$
(a) $M=1000$ is the carrying capacity.
(b) $k=0.12$ is the maximum population growth rate.
(c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{1000}{2}=500$

$$
\text { 15. } \frac{d P}{d t}=0.002 P\left(1-\frac{P}{2800}\right)
$$

To analyze the logistic differential equation $\frac{d P}{d t}=0.002 P\left(1-\frac{P}{2800}\right)$, compare it to the logistic differential equation $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$.
(a) $M=2800$ is the carrying capacity.
(b) $k=0.002$ is the maximum population growth rate.
(c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{2800}{2}=1400$

17. $\frac{d P}{d t}=0.00003 P(1000-P)$

To analyze the logistic differential equation $\frac{d P}{d t}=0.00003 P(1000-P)$, compare it to the logistic differential equation $\frac{d P}{d t}=\frac{k}{M} P(M-P)$
(a) $M=1000$ is the carrying capacity.
(b) $\frac{k}{1000}=0.00003 k=0.03$ is the maximum population growth rate.
(c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{1000}{2}=500$

19. $d P$
 $\overline{d t}=0.0002 P(1200-P)$

To analyze the logistic differential equation $\frac{d P}{d t}=0.0002 P(1200-P)$, compare it to the logistic differential equation $\frac{d P}{d t}=\frac{k}{M} P(M-P)$
(a) $M=1200$ is the carrying capacity.
(b) $\frac{k}{1200}=0.0002 k=0.24$ is the maximum population growth rate.
(c) The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{1200}{2}=600$

${ }^{\ln } \mathrm{P}_{\text {roblems }} 21$ and 22 , write the logistic differential equation $\frac{d P}{d t}$
 whose solution is P.

21. $P(t)=\frac{2100}{1+29 e^{-0.15 t}}$

To analyze the logistic equation $P(t)=\frac{2100}{1+29 e^{-0.15 t}}$, compare it to the logistic equation $P(t)=\frac{M}{1+a e^{-k t}}$ where $P(t)$ is the population at time t, M is the carrying capacity, k is the maximum population growth rate, $P_{0}=P(0)$, and $a=\frac{M-P_{0}}{P_{0}}$.
Once we identify k and M we can substitute them into the logistic differential equation $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$.
For $P(t)=\frac{2100}{1+29 e^{-0.15 t}}, M=2100, a=29$, and $k=0.15$.
So the logistic differential equation is $\frac{d P}{d t}=0.15 P\left(1-\frac{P}{2100}\right)$

In Problems 29 and 30, for each logistic function find the population when it is growing most rapidly.
29. $P(t)=\frac{100}{1+2 e^{-0.2 t}}$

To analyze the logistic function P, compare $P(t)=\frac{100}{1+2 e^{-0.02 t}}$ to $P(t)=\frac{M}{1+a e^{-k t}}$
The Population, P, when P is growing most rapidly, is at the inflection point. This occurs when the population equals $\frac{M}{2}=\frac{100}{2}=50$
33. Spread of Flu Suppose one person with the flu is placed in a group of 49 people without the flu. The rate of change of those with the flu with respect to time t (in days) is proportional to the product of the number of those with the flu and the number without flu.
(a) If P is the number of people with the flu and the maximum daily population growth rate is 15%, write a differential equation that models the experiment.
(b) Write the logistic function that satisfies the differential equation.
(c) Find the time it takes for $\frac{1}{2}$ the population to become infected.
(d) How long does it take for 80% of the population to become infected?
(a) Since the rate of change of the number of people with the flu P with respect to time t (in days) is proportional to the product of P and $50-P$, the differential equation can be written as $\frac{d P}{d t}=C P(50-P)$. The differential equation can also be written in the form $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$ where $M=50$ is the carrying capacity and $k=0.15$ is the maximum growth rate. The differential equation becomes $\frac{d P}{d t}=0.15 P\left(1-\frac{P}{50}\right)$ with $P(0)=1$.
(b) The initial number of people with the flu is $P_{0}=1$. The solution to the differential equation $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$ is $P(t)=\frac{M}{1+a e^{-k t}}$ where $k=0.15, M=50$, and $a=$ $\frac{M-P_{0}}{P_{0}}=\frac{50-1}{1}=49$. Therefore, $P(t)=\frac{50}{1+49 e^{-0.15 t}}$.
(c) Find t so that $P(t)=25$.

$$
\begin{aligned}
\frac{50}{1+49 e^{-0.15 t}} & =25 \\
e^{-0.15 t} & =\frac{\frac{50}{25}-1}{49} \\
-0.15 t & =\ln \left(\frac{\frac{50}{25}-1}{49}\right) \\
t & =-\frac{1}{0.15} \ln \left(\frac{1}{49}\right)=\frac{1}{0.15} \ln 49 \approx 29.945 \text { days }
\end{aligned}
$$

33. Spread of Flu Suppose one person with the flu is placed in a group of 49 people without the flu. The rate of change of those with the flu with respect to time t (in days) is proportional to the product of the number of those with the flu and the number without flu.
(d) How long does it take for 80% of the population to become infected?
(d) Find t so that $P(t)=0.80(50)$.

$$
\begin{aligned}
\frac{50}{1+49 e^{-0.15 t}} & =40 \\
e^{-0.15 t} & =\frac{\frac{50}{40}-1}{49} \\
-0.15 t & =\ln \left(\frac{0.25}{49}\right) \\
t & =-\frac{1}{0.15} \ln \left(\frac{0.25}{49}\right) \approx 35.187 \text { days }
\end{aligned}
$$

