BC Calculus — 7.5 Notes — Logistic Models

Logistic population growth is when the growth rate increases quickly at first, but then slows
as the population reaches carrying capacity. ( ety :7 mﬂm) o W L Y

Graphs would look something like this:
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The derivative of & E;}g,;atm fanction is typically written in one of the following forms: ¥ fe f o ,;&g /rf
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or if you manipulate this algebraically you could see it as ﬂ&
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In either form, k and L ave positive constants and L is the limiting 'vmixxa,
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These two things will answer most questions you will see on the AP Exam for kagmtxcs,
1. The maximum yvalue of the logistic function is the Emﬁmg vahie. —>» [ 1/ &J e,
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“Identify the carrying capacity and where the maximum rate of change occurs. |
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Carrying capacity: | 5D

Maximum rate occurs at t] =50

You can derive a general solution, using separation of variables, to solve % = ky (1 — f)

You end up with something that looks like this: y = w3 +;;-u 3 /;e.»Js's. tic Foym of a 5 »7L//.«. ﬂd,j
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Practice Problems:

1. A population y changes at a rate modeled by the logistic differential equation i,% = 0.3y(4000 ~ y), where £ is
measured in years. What are all the values of y for which the population is

The rate of change % of the number of people entering a state park is modeled by a

logistic differential equation. The capacity of the state park is 2500 people. At a certain
time, the number of people in the state park is 1200 and is increasing at a rate of 100
people per hour. Create a differential equation that could represent this situation.
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A rumor spreads through a community at the rate — = 2y(0.7 — y), where y is the proportlon of the populanon
that has heard the rumor at time ¢t.
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a. What proportion of the populanon has heard the rumor when it is spreadmg the fastest?
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c. At what time t is the rumor spreadmg the fastest? [no calculator, give an exact answer. ]
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3. The population P of a city at time ¢ is increasing according to a logistic differential equation. Which of the

following could be the differential equation? \) _— t‘iﬁ i Q (Li___( )
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A, £ —0.375¢
dt

B. 27 = 0.375t(15000 — ¢)
c. £=0375pP

dt
D. 2 =0.375(15000 — P)
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4. The total number of positive COVID cases in a city t days after the start of an outbreak is modeled by the
function y = C(t) that is the solution to the logistic differential equatlon dc = m y(1600 — y). If there are
10 reported positive COVID cases initially, what is the_ﬁ_rrgggg_xame for the total number of positive cases of
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5. The size of a rabbit population is modeled by the function R that is a solution to the logistic differential equation

2
R B _ R \here t is measured in iears for t > 0 and the initial population satisfies R(0) > 0. Which of

5 Al sz the following statements [
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VII. The maximum rate of change of R occurs at t = 0. J
_i k /- &
A. None J :

B. Il only

i

.___..-._.

o0

C. 1 & llonly

D. II & Ill only

9



6. The rate of change % of the number of people in a mall is modeled by a logistic differential equation. The
maximum number of people allowed in the mall is 2000. At 10 A.M., the number of people in the mall is 200

( j and is increasing at a rate of 400 people per hour. Which of the following differential equations describe this
situation? ¥ Limif VA’M._ L= doo0
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7. The population P of deer in a preserve grows at a rate that ig jointly proportlonaﬂto the size of the deer
population and the difference between the deer population and the carrying capacity of the population. Tf the

carrying capacity of the preserve is 3000 deer, which of the following differential equations best models the

growth rate of the deer population with respect to time t where k is a constant? L= 3000
A. 22 =3000k(1~ P) “” =8 (L P
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8. The rate of change, %Iti, of the number of people entering an arena is modeled by a logistic differential equation.

The capacity of the arena is 5000 people. At a certain time, the number of people in the arena is 1000 and is
increasing at the rate of 500 people per minute. Which of the following dlfferentlal equations could describe

this situation? {=5000 When P= iﬂDO Jf - 600
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9. Ifa certain population is modeled by the function P that satisfies the logistic differential equation
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_10._The function P satisfies the logistic differential equation —
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11. Which of the following differential equations for a population P could y L:— Z%O'D
model the logistic growth shown in the figure?
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