8.06b Parabolas and Circles Review WS \#2

1. Identify the characteristics of the parabola. Graph and label all parts.
$(y-2)^{2}=-16(x+3)$
$\mathrm{p}=$ \qquad
Vertex: \qquad

Focus: \qquad

Focal Width: \qquad
2. Write the equation of the parabola $x^{2}-4 x+8 y-13=39$ in standard form. Identify the vertex, focus, directrix, axis of symmetry, and focal width. Graph the parabola and label all parts.

Standard Form: \qquad
$\mathrm{p}=$ \qquad
Vertex: \qquad
Focus: \qquad
Directrix: \qquad
Axis of Symmetry: \qquad

Focal Width: \qquad
3. Write the standard form of the equation for the parabola with a focus at $(2,1)$ and directrix at $x=-2$ Identify its characteristics. Graph the parabola and label all parts.

Standard Form: \qquad
$\mathrm{p}=$ \qquad
Vertex: \qquad
Directrix: \qquad
Axis of Symmetry: \qquad

4. Use the equation $x^{2}+(y-1)^{2}=4$ and \quad. Write the equation of a circle with center $(1,3)$ Identify the center and radius. Graph the circle.

6. Given a circle with center $(3,6)$, draw a circle that is tangent to $\mathrm{y}=2$, then write the equation of the circle.

and radius $=\sqrt{12}$. Graph the circle.

7. Put the equation of the circle into standard form. Identify the center and radius. $x^{2}+y^{2}+14 x=2 y-41$
8. Find the equation of a circle whose center is at $(0,-8)$ and contains the point $(2,-5)$.
9. Find the equation of a circle whose diameter has endpoints at $(-13,-7)$ and $(11,11)$.

