8.06c Parabolas and Circles Review WS \#3

1. Identify the characteristics of the parabola. Graph and label all parts.
$(y-1)^{2}=-8 x$
$\mathrm{p}=$ \qquad

Vertex: \qquad

Focus: \qquad

Focal Width: \qquad
2. Write the equation of the parabola $y^{2}-8 y+4 x=12$ in standard form. Identify the vertex, focus, directrix, axis of symmetry, and focal width. Graph the parabola and label all parts.

Standard Form: \qquad
$\mathrm{p}=$ \qquad
Vertex: \qquad
Focus: \qquad
Directrix: \qquad
Axis of Symmetry: \qquad

Focal Width: \qquad
3. Write the standard form of the equation for the parabola with a vertex at $(3,1)$ and directrix at $x=5$ Identify its characteristics. Graph the parabola and label all parts.

Standard Form: \qquad
$\mathrm{p}=$ \qquad
Vertex: \qquad
Directrix: \qquad
Axis of Symmetry: \qquad

4. Use the equation $(x-3)^{2}+(y-5)^{2}=26$ and Identify the center and radius. Graph the circle.

6. Given a circle with center $(3,6)$, draw a circle that is tangent to $x=8$, then write the equation of the circle.

5. Write the equation of a circle with center $(-2,-5)$ and radius $=\sqrt{17}$. Graph the circle.

7. Put the equation of the circle into standard form. Identify the center and radius. $x^{2}+y^{2}-8 x-4 y-5=0$
8. Find the equation of a circle whose center is at $(5,9)$ and contains the point $(7,8)$.
9. Find the equation of a circle whose diameter has endpoints at $(-5,-8)$ and $(7,2)$.

