8.06c Parabolas and Circles Review WS #3

1. Identify the characteristics of the parabola. Graph and label all parts.

$$(y-1)^2 = -8x$$

p = _____

Vertex: _____

Focus: _____

Directrix:

Axis of Symmetry:

Focal Width: _____

2. Write the equation of the parabola $y^2 - 8y + 4x = 12$ in standard form. Identify the vertex, focus, directrix, axis of symmetry, and focal width. Graph the parabola and label all parts.

Standard Form:

p = _____

Vertex: _____

Focus: _____

Directrix:

Axis of Symmetry: _____

Focal Width: _____

3. Write the standard form of the equation for the parabola with a vertex at (3,1) and directrix at x = 5 Identify its characteristics. Graph the parabola and label all parts.

Standard Form:

p = _____

Vertex: _____

Directrix:

Axis of Symmetry: _____

4. Use the equation $(x-3)^2 + (y-5)^2 = 26$ and Identify the center and radius. Graph the circle.

6. Given a circle with center (3,6), draw a circle that is tangent to x = 8, then write the equation of the circle.

5. Write the equation of a circle with center (-2, -5) and radius= $\sqrt{17}$. Graph the circle.

7. Put the equation of the circle into standard form. Identify the center and radius. $x^2 + y^2 - 8x - 4y - 5 = 0$

8. Find the equation of a circle whose center is at (5, 9) and contains the point (7, 8).

9. Find the equation of a circle whose diameter has endpoints at (-5,-8) and (7,2).