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BC Calculus — 9.1 Notes — Defining and Differentiating Parametric Equations

We have been looking at graphs of one equation with two variables, typically x and y. Now we are
looking at three variables that will represent a curve in the plane.

In the rectangular equation we are ables6
third variable (often t),
point (x,y). NOTE: the third variable F

with the addition of thg

ye are able to determine when the object was at a
i§ offen time, but not always,
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If f and g are continuous functions of £ on an interval I, then the equations x = £(¢) and
¥ = g(t) are parametric equations and ¢ is the parameter. You can sketch the curve ofa
parametric by substituting in values for ¢.

L. Sketch the curve with the following parametrization: x(¢) = 2t and y(&) =t? - 1, with

-1<t <2
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To find the rectangular equation when you are given the parametric equations, eliminate the
eter ¢ through substitutiop.
2. Givenx(t) = 2t,y(t) = t* - 1. Find the rectangular equation by eliminating the parsmeter.
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3. Given the parametric equations X(£) = 2 cost and y(t) = 2sint. Eliminate the param
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&rivative of a Parametric Equation
The derivative of a parametric given by x = f(t) and y = g(t) is found by the following:
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1. For the given parametric equations, eliminate the
parameter and write the comesponding
rectangular equation, x = e andy = e* — 1.
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2. Let C be a curve described by the parametrization
x = 5t and y = t* + 3. Find an expression for the
slope of the line tangent to C at any point (X, ¥)

x 7o 3. The position of a particle at any timet 2 0is
given by x(t) = 3% + 1land y(t) = ;-ﬁ. Find
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5. A curve is described by the parametric equations
x =tcostandy = tsint. Find the equation of
the line tangent to the curve at the point
determined by t = .
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6. Calculator active. The coordinates (x(t),y(t)) of
the position of a drone change at rates given by

1
x'(t) = 2t3 and y'(t) = tz, where x(t) and y(t) are
measured in meters and t is measured in seconds. At
what time ¢, for 0 < t < 2, does the slope of the line
tangent to its path have a slope of 1.57
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7. A curve in the xy-plane is defined by the
parametric equations x(t) = cos(3t) and
y(t) = sin(3t) for t = 0. What is the value of

(&) + ()"
X(t) = -sin(3¢)- 3
Yt) = cos(3t)- 3
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8. A curve is defined by the parametric equations
x(t) = at? + b and y(t) = ct — b, where a, b, and ¢
are nonzero constants. What is the slope of the line
tangent to the curve at the point (x(t), y(t)) when
t =27
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9. No Calculator. For 0 <t < 11 the parametric
equations x = 3sint and y = 2 cost describe
the elliptical path of an object. At the point
where ¢ = 11, the object travels along a line
tangent to the path at that point. What is the
slope of that line?
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A particle moves in the xy-plane so that its position
for t = 0 is given by the parametric equations

x(t) = 2kt? and y(t) = 3t, where k is a positive
constant. When t = 2 the line tangent to the
particle’s path has a slope of 4. What is the value of
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11. Find the equation of the line tangent to the curve | 12. For what values of t does the curve given by the
defined parametrically by the equations parametric equations x(t) = %ttx _ ztz and
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13. Suppose a curve is given by the parametrlc equations x = f(t) and y = g(¢t), forall t > 1 and
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9.1 Parametric Equations Test Prep

14. A curve is defined parametrically by x(t) = t2 and y(t) = t® — 3t. Find the points on the graph where the
tangent line is horizontal or vertical.
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15. Free Response. Consider the curve given by the parametric equations y = t3 — 12t and x = %tz —t.

. Ldy .
a. Find ﬁ in terms of t.

b. Write an equation for the line tangent to the curve at the point where t = —1.
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¢. Find the x and y coordinates for each critical point on the curve and identify each point as having a vertical
or horizontal tangent,
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16. A curve is given by the parametric equations x(t) = 5t3 — 5 and y(t) = t? + 7. What is the equation of the
tangent line to the curve when t = 1? .
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