Calculus BC

Ch. 9.2 Notes

Series and Convergence

- -Understand the definition of a convergent infinite series
- -Use properties of infinite geometric series
- -Use the nth-Term Test for Divergence of an infinite series

One important application of infinite sequences is in representing infinite summations. If $\{a_n\}$ is an infinite

sequence, then $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$ is an **infinite series**, simply the sum of the terms in a

<u>sequence</u>. The numbers a_1 , a_2 , a_3 , are the **terms** of the series. Unlike sequences which always start at 1, sometimes it is convenient to begin the index at n = 0 (or some other integer).

To find the sum of an infinite series, consider the following sequence of partial sums:

$$S_1 = a_1$$
 $S_2 = a_1 + a_2$ $S_3 = a_1 + a_2 + a_3$ $S_n = a_1 + a_2 + a_3 + \dots + a_n$

If this sequence of partial sums converges, the series is said to converge.

Definitions of Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty} a_n$ the **nth partial sum** is given by $S_n = a_1 + a_2 + a_3 + ... + a_n$. If the sequence of partial

sums $\{S_n\}$ converges to S, then the series $\sum_{n=1}^{\infty} a_n$ converges. The limit S is called the sum of the series.

If $\{S_n\}$ diverges, then the series diverges.

Example) Convergent and Divergent Series Write a few partial sums and determine if the series converges.

1)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

2)
$$\sum_{n=1}^{\infty} 1$$

$$3) \sum_{n=1}^{\infty} \frac{1}{n}$$

$$4) \sum_{n=1}^{\infty} \frac{1}{n^2}$$

A series such as $\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots$ is called a **telescoping series** because the series <u>collapses</u> to one term or just a few terms. If a telescoping series converges, it will converge to $S=b_1-\lim_{n\to\infty}b_{n+1}$ by the Telescoping Series Test

$$5) \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) \qquad .$$

6) Writing a Series in Telescoping Form

Find the sum of the series $\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1}$

Geometric Series

Series of the form $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + ... + ar^n + ..., a \neq 0$ are called a **geometric series** with ratio r.

A geometric series with ratio r diverges if $|r| \ge 1$. If 0 < |r| < 1, then the series converges to the sum given by:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad 0 < |r| < 1.$$

Example) Convergent and Divergent Geometric Series

$$7) \sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$

8)
$$\sum_{n=0}^{\infty} \frac{3}{2^n}$$

The next few sections of this chapter are concerned with determining whether a function converges or diverges. There are several tests for convergence/divergence that you will have to know. The first is this: nth-Term Test for Divergence

If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges. ***The converse of this <u>is not</u> true. If $\lim_{n\to\infty} a_n = 0$ the test is inconclusive***

Examples: Determine if the Series Diverges

$$9) \sum_{n=0}^{\infty} 2^n$$

10)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!+1}$$

$$11) \sum_{n=1}^{\infty} \frac{1}{n}$$

12)
$$\sum_{n=1}^{\infty} \frac{2n+3}{3n-5}$$

13)
$$\sum_{n=2}^{\infty} \frac{1}{(1.1)^n}$$

Calculus BC 9.2 Notes

Series and Convergence

-Understand the definition of a convergent infinite series
-Use properties of infinite geometric series
-Use the nth-Term Test for Divergence of an infinite series

Thing to see whether the terms of a sequence converges or diverges.

This another thing entirely to see if the sum of One important application of infinite sequences is in representing infinite summations. If $\{a_n\}$ is an infinite \mathcal{H}_{ke}

sequence, then $\sum_{n=0}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$ is an **infinite series**, simply the sum of the terms in a

sequence. The numbers a₁, a₂, a₃, are the terms of the series. Unlike sequences which always start at 1, sometimes it is convenient to begin the index at n = 0 (or some other integer).

To find the sum of an infinite series, consider the following sequence of partial sums:

$$S_1 = a_1$$
 $S_2 = a_1 + a_2$ $S_3 = a_1 + a_2 + a_3$ $S_n = a_1 + a_2 + a_3 + ... + a_n$ S_n is the nth partial sum.

☀ If this sequence of partial sums converges, the series is said to converge.

Definitions of Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty} a_n$ the **nth partial sum** is given by $S_n = a_1 + a_2 + a_3 + ... + a_n$. If the <u>sequence</u> of partial sums $\{S_n\}$ converges to S, then the series $\sum_{n=0}^{\infty} a_n$ converges. The limit S is called the sum of the series. If $\{S_n\}$ diverges, then the series diverges.

Example) Convergent and Divergent Series Write a few partial sums and determine if the series converges.

1)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

 $S_i = \frac{1}{2}$ convergent s

convergent series 52= 14= 34

$$\frac{S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}}{3) \sum_{n=1}^{\infty} \frac{1}{n} \qquad Q_n = \frac{1}{n} \qquad Q_n = 1 + \frac{1}{2} + \frac{1}{2}$$

3) $\sum_{n=1}^{\infty} \frac{1}{n}$ $Q_n = \frac{1}{n}$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ $Q_n =$

2) $\sum_{i=1}^{n} 1 + 1 + 1 + 1 + \dots$ divergent series

$$S_2 = 1+1$$

 $S_3 = 1+1+1$

54=1+1+1+1=25 = 2.08 Sum (seg (x, x, 1,999))=7.484 Sqq=7.484 Sum divages to 00

A series such as $\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots$ is called a **telescoping series** because the series <u>collapses</u> to one term or just a few terms. If a telescoping series converges, it will converge to $S = b_1 - \lim_{n \to \infty} b_{n+1}$ by the

Telescoping Series Test

* 2 ratios, usually subtracted and similar to each other. These ratios differ by only a couple of values so that it will generate the same values but with different signs where down the line they will cancel out.

5)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots$$

$$= \left(\frac{1}{3} - \frac{1}{2} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots$$
Sum converges to 1.

Writing a Series in Telescoping Form

Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \frac{2}{(2n+1)(2n-1)}$$

$$= \left(\frac{1}{3} + 1\right) + \left(\frac{1}{5} + \frac{1}{3}\right) + \left(\frac{1}{7} + \frac{1}{5}\right) + \frac{1}{2n-1}$$

$$= 1$$
The sum converges to 1.

Geometric Series (GST)

Series of the form $\sum ar^n = a + ar + ar^2 + ar^3 + ... + ar^n + ..., a \neq 0$ are called a **geometric series** with ratio r.

A geometric series with ratio $|r| \le 1$. If 0 < |r| < 1, then the series converges to the sum given

by:
$$\sum_{n=0}^{\infty} ar^n = \frac{a_n}{1-r}$$
, $0 < |r| < 1$. \Rightarrow One of the few tests where we can find the series converges.

Example) Convergent and Divergent Geometric Series

7)
$$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$

8) $\sum_{n=0}^{\infty} \frac{3}{2^n} = \sum_{n=1}^{\infty} 3\left(\frac{1}{2^n}\right) = \sum_{n=1}^{\infty} 3\left(\frac{1}{2^n}\right)^n$
 $|r| = \frac{3}{2} \ge 1$, so

Series diverges

Series converges

Series converges

Series converges

Series converges

Series converges

The series converges to 3.

The next few sections of this chapter are concerned with determining whether a function converges or diverges. There are several tests for convergence/divergence that you will have to know. The first is this: * Does not test for convergence! nth-Term Test for Divergence

If
$$\lim_{n\to\infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ diverges. ***The converse of this is not true. If $\lim_{n\to\infty} a_n = 0$ the test is inconclusive***

**This is only a 1-way test. **This should always be the first test we expect as this can be a time swa

9)
$$\sum_{n=0}^{\infty} 2^n$$

Since $\lim_{n\to\infty} a^n \neq 0$
then $\sum_{n=1}^{\infty} a^n$ diverges.
by the n^{th} term test

10)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!+1} \frac{\lim_{n \to \infty} \frac{n!}{2n!+1}}{\lim_{n \to \infty} \frac{1}{2n!+1}} = \frac{1}{2} \neq 0$$
 11) $\sum_{n=1}^{\infty} \frac{1}{n}$

Since $\lim_{n \to \infty} a_n \neq 0$ then the $\lim_{n \to \infty} a_n = 0$

Series diverges.

(by the n^{th} term test)

This can be a nime sau

 $\lim_{n \to \infty} a_n = 0$

This can be a nime sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the same sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the sau

 $\lim_{n \to \infty} a_n = 0$

The solution of the sau

 $\lim_{n \to \infty} a_n = 0$

The sol

Since
$$\lim_{n \to \infty} \frac{2n+3}{3n-5}$$

Since $\lim_{n \to \infty} \frac{2n+3}{3n-5} = \frac{2}{3} \neq 0$,

series diverges by n^{th} term test.

* Though the sequence converges

to $\frac{2}{3}$, but the series diverge

(to $+\infty$)

13)
$$\sum_{n=2}^{\infty} (\overline{1.1})^{n}$$

$$\sum_{n=2}^{\infty} (\overline{1.1})^{n} = 0, \quad n^{+h} \text{ term test is inconclusive}$$

$$\frac{1}{(1.1)^{n}} = \frac{1}{(1.1)^{n}} = \frac{1}{(1.1)^{n}} = \frac{1}{(1.1)^{n}} = \frac{1}{(1.1)^{n}}$$

$$\sum_{n=2}^{\infty} (\overline{10})^{n}, \quad |r| = \frac{10}{11} < 1, \quad \text{converges}$$

$$\frac{1}{(1.1)^{n}} = \frac{10}{(1.1)^{n}} = \frac{10}{(1.1)^{n}} = \frac{100}{(1.1)^{n}}$$

$$\frac{1}{(1.1)^{n}} = \frac{100}{(1.1)^{n}} = \frac{100}{(1.1)^$$