104.
$$f(1) = 0$$
, $f(2) = 1$, $f(3) = 2$, $f(4) = 4$, ...

In general:
$$f(n) = \begin{cases} n^2/4, & n \text{ even} \\ (n^2 - 1)/4, & n \text{ odd.} \end{cases}$$

(See below for a proof of this.)

x + y and x - y are either both odd or both even. If both even, then

$$f(x + y) - f(x - y) = \frac{(x + y)^2}{4} - \frac{(x - y)^2}{4} = xy.$$

If both odd,

$$f(x + y) - f(x - y) = \frac{(x + y)^2 - 1}{4} - \frac{(x - y)^2 - 1}{4} = xy.$$

Proof by induction that the formula for f(n) is correct. It is true for n = 1. Assume that the formula is valid for k. If k is even, then $f(k) = k^2/4$ and

$$f(k+1) = f(k) + \frac{k}{2} = \frac{k^2}{4} + \frac{k}{2} = \frac{k^2 + 2k}{4} = \frac{(k+1)^2 - 1}{4}$$

The argument is similar if k is odd.

Section 9.3 The Integral Test and p-Series

1.
$$\sum_{n=1}^{\infty} \frac{1}{n+3}$$

Let

$$f(x) = \frac{1}{x+3}$$
, $f'(x) = -\frac{1}{(x+3)^2} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x+3} dx = \left[\ln(x+3) \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

2.
$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

Let
$$f(x) = \frac{2}{3x+5}$$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_1^\infty \frac{2}{3x+5} dx = \left[\frac{2}{3} \ln(3x+5) \right]_0^\infty = \infty$$

So, the series diverges by Theorem 9.10.

3.
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

Let
$$f(x) = \frac{1}{2^x}$$
, $f'(x) = -(\ln 2)2^{-x} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{2^{x}} dx = \left[\frac{-1}{(\ln 2) 2^{x}} \right]^{\infty} = \frac{1}{2 \ln 2}$$

So, the series converges by Theorem 9.10.

4.
$$\sum_{n=1}^{\infty} 3^{-n}$$

Let
$$f(x) = \frac{1}{3^x}$$
, $f'(x) = -(\ln 3)3^{-x} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{3^{x}} dx = \left[\frac{-1}{(\ln 3) \, 3^{x}} \right]^{\infty} = \frac{1}{3 \ln 3}$$

So, the series converges by Theorem 9.10.

$$5. \sum_{n=0}^{\infty} e^{-n}$$

Let
$$f(x) = e^{-x}$$
, $f'(x) = -e^{-x} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} e^{-x} dx = \left[-e^{-x} \right]_{1}^{\infty} = \frac{1}{e}$$

So, the series converges by Theorem 9.10.

6.
$$\sum_{n=1}^{\infty} ne^{-n/2}$$

Let
$$f(x) = xe^{-x/2}$$
, $f'(x) = \frac{2-x}{2e^{x/2}} < 0$ for $x \ge 3$.

f is positive, continuous, and decreasing for $x \ge 3$

$$\int_{3}^{\infty} x e^{-x/2} dx = \left[-2(x+2)e^{-x/2} \right]_{3}^{\infty} = 10e^{-3/2}$$

So, the series converges by Theorem 9.10.

7.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

$$f(x) = \frac{1}{x^2 + 1}$$
, $f'(x) = -\frac{2x}{(x^2 + 1)^2} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \left[\arctan x\right]_{1}^{\infty} = \frac{\pi}{4}$$

So, the series converges by Theorem 9.10.

9.
$$\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n+1}$$

Let
$$f(x) = \frac{\ln(x+1)}{x+1}$$
, $f'(x) = \frac{1-\ln(x+1)}{(x+1)^2} < 0$ for $x \ge 2$.

f is positive, continuous, and decreasing for $x \ge 2$.

$$\int_1^\infty \frac{\ln(x+1)}{x+1} dx = \left[\frac{\left[\ln(x+1) \right]^2}{2} \right]^\infty = \infty$$

So, the series diverges by Theorem 9.10.

10.
$$\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$$

Let
$$f(x) = \frac{\ln x}{\sqrt{x}}$$
, $f'(x) = \frac{2 - \ln x}{2x^{3/2}}$.

f is positive, continuous, and decreasing for $x > e^2 \approx 7.4$.

$$\int_{2}^{\infty} \frac{\ln x}{\sqrt{x}} dx = \left[2\sqrt{x} (\ln x - 2) \right]_{2}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

11.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$$

Let
$$f(x) = \frac{1}{\sqrt{x}(\sqrt{x} + 1)}$$
,

$$f'(x) = -\frac{1 + 2\sqrt{x}}{2x^{3/2}(\sqrt{x} + 1)^2} < 0.$$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx = \left[2 \ln(\sqrt{x}+1)\right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

8.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

$$f(x) = \frac{1}{2x+1}$$
, $f'(x) = -\frac{2}{(2x+1)^2} < 0$ for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{2x+1} dx = \left[\ln \sqrt{2x+1} \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

12.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 3}$$

Let
$$f(x) = \frac{x}{x^2 + 3}$$
, $f'(x) = \frac{3 - x^2}{(x^2 + 3)} < 0$ for $x \ge 2$.

f is positive, continuous, and decreasing for $x \ge 2$

$$\int_{1}^{\infty} \frac{x}{x^2 + 3} dx = \left[\ln \sqrt{x^2 + 3} \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

13.
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$

Let
$$f(x) = \frac{\arctan x}{x^2 + 1}$$

$$f'(x) = \frac{1 - 2x \arctan x}{(x^2 + 1)^2} < 0 \text{ for } x \ge 1.$$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{\arctan x}{x^2 + 1} dx = \left[\frac{\left(\arctan x\right)^2}{2} \right]^{\infty} = \frac{3\pi^2}{32}$$

So, the series converges by Theorem 9.10.

14.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^3}$$

Let
$$f(x) = \frac{\ln x}{x^3}$$
, $f'(x) = \frac{1 - 3 \ln x}{x^4}$.

f is positive, continuous, and decreasing for x > 2.

$$\int_{2}^{\infty} \frac{\ln x}{x^{3}} dx = \left[-\frac{\left(2 \ln x + 1\right)}{4x^{4}} \right]_{2}^{\infty}$$
$$= \frac{2 \ln 2 + 1}{16}$$

So, the series converges by Theorem 9.10.

15.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

Let
$$f(x) = \frac{\ln x}{x^2}$$
, $f'(x) = \frac{1 - 2 \ln x}{x^3}$.

f is positive, continuous, and decreasing for $x > e^{1/2} \approx 1.6$.

$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx = \left[\frac{-(\ln x + 1)}{x} \right]_{1}^{\infty} = 1$$

So, the series converges by Theorem 9.10.

$$16. \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

Let
$$f(x) = \frac{1}{x\sqrt{\ln x}}$$
, $f'(x) = -\frac{2 \ln x + 1}{2x^2(\ln x)^{3/2}}$.

f is positive, continuous, and decreasing for $x \ge 2$.

$$\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} \, dx = \left[2 \sqrt{\ln x} \right]_{2}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

17.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+3)^3}$$

Let
$$f(x) = (2x + 3)^{-3}$$
, $f'(x) = \frac{-6}{(2x + 3)^4} < 0$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} (2x+3)^{-3} dx = \left[\frac{-1}{4(2x+3)^{2}} \right]_{0}^{\infty} = \frac{1}{100}$$

So, the series converges by Theorem 9.10.

18.
$$\sum_{n=1}^{\infty} \frac{n+2}{n+1}$$

Let
$$f(x) = \frac{x+2}{x+1} = 1 + \frac{1}{x+1}$$
, $f'(x) = \frac{-1}{(x+1)^2} < 0$

f is positive, continuous, and decreasing for $x \ge 1$

$$\int_{1}^{\infty} \frac{x+2}{x+1} dx = \left[x + \ln(x+1)\right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

[Note: $\lim_{n\to\infty} \frac{n+2}{n+1} = 1 \neq 0$, so the series diverges.]

19.
$$\sum_{n=1}^{\infty} \frac{4n}{2n^2+1}$$

Let
$$f(x) = \frac{4x}{2x^2 + 1}$$
, $f'(x) = \frac{-4(2x^2 - 1)}{(2x^2 + 1)^2} < 0$

for $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{4x}{2x^{2} + 1} dx = \left[\ln(2x^{2} + 1) \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

20.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$$

Let
$$f(x) = \frac{1}{\sqrt{x+2}}$$
, $f'(x) = \frac{-1}{2(x+2)^{3/2}} < 0$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{(x+2)^{1/2}} dx = \left[2\sqrt{x+2} \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

21.
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

Let
$$f(x) = \frac{x}{x^4 + 1}$$
, $f'(x) = \frac{1 - 3x^4}{(x^4 + 1)^2} < 0$ for $x > 1$

f is positive, continuous, and decreasing for x > 1.

$$\int_{1}^{\infty} \frac{x}{x^4 + 1} dx = \left[\frac{1}{2} \arctan(x^2) \right]_{1}^{\infty} = \frac{\pi}{8}$$

So, the series converges by Theorem 9.10.

Let
$$f(x) = \frac{x}{(x^2 + 1)^2}$$
, $f'(x) = \frac{-(3x^2 - 1)}{(x^2 + 1)^3} < 0$ for

 $x \ge 1$.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{x}{\left(x^{2}+1\right)^{2}} dx = \left[\frac{-1}{2\left(x^{2}+1\right)}\right]_{1}^{\infty} = \frac{1}{4}$$

So, the series converges by Theorem 9.10.

23.
$$\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^k + c}$$

Let

$$f(x) = \frac{x^{k-1}}{x^k + c}, \ f'(x) = \frac{x^{k-2} \left[c(k-1) - x^k\right]}{\left(x^k + c\right)^2} < 0$$

for $x > \sqrt[k]{c(k-1)}$.

f is positive, continuous, and decreasing for $x > \frac{x}{c(k-1)}$.

$$\int_{1}^{\infty} \frac{x^{k-1}}{x^{k} + c} dx = \left[\frac{1}{k} \ln(x^{k} + c) \right]_{1}^{\infty} = \infty$$

So, the series diverges by Theorem 9.10.

24.
$$\sum_{n=1}^{\infty} n^k e^{-n}$$

Let
$$f(x) = \frac{x^k}{e^x}$$
, $f'(x) = \frac{x^{k-1}(k-x)}{e^x} < 0$ for $x > k$.

f is positive, continuous, and decreasing for x > k. Use integration by parts.

$$\int_{1}^{\infty} x^{k} e^{-x} dx = \left[-x^{k} e^{-x} \right]_{1}^{\infty} + k \int_{1}^{\infty} x^{k-1} e^{-x} dx$$
$$= \frac{1}{e} + \frac{k}{e} + \frac{k(k-1)}{e} + \dots + \frac{k!}{e}$$

So, the series converges by Theorem 9.10.

25. Let
$$f(x) = \frac{(-1)^x}{x}$$
, $f(n) = a_n$.

The function f is not positive for $x \ge 1$.

26. Let
$$f(x) = e^{-x} \cos x$$
, $f(n) = a_n$.

The function f is not positive for $x \ge 1$.

27. Let
$$f(x) = \frac{2 + \sin x}{x}$$
, $f(n) = a_n$.

The function f is not decreasing for $x \ge 1$.

28. Let
$$f(x) = \left(\frac{\sin x}{x}\right)^2$$
, $f(n) = a_n$.

The function f is not decreasing for $x \ge 1$.

29.
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

Let
$$f(x) = \frac{1}{x^3}$$
.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{3}} dx = \left[-\frac{1}{2x^{2}} \right]_{1}^{\infty} = \frac{1}{2}$$

Converges by Theorem 9.10

30.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$$

Let
$$f(x) = \frac{1}{x^{1/2}} = \frac{1}{\sqrt{x}}$$
.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{1/2}} dx = \left[2x^{1/2}\right]_{1}^{\infty} = \infty$$

Diverges by Theorem 9.10

31.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/4}}$$

Let
$$f(x) = \frac{1}{x^{1/4}}$$
, $f'(x) = \frac{-1}{4x^{5/4}} < 0$ for $x \ge 1$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{1/4}} dx = \left[\frac{4x^{3/4}}{3} \right]_{1}^{\infty} = \infty$$

Diverges by Theorem 9.10

32.
$$\sum_{n=1}^{\infty} \frac{1}{n^5}$$

Let
$$f(x) = \frac{1}{x^5}$$
.

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{5}} dx = \left[-\frac{1}{4x^{4}} \right]_{1}^{\infty} = \frac{1}{4}$$

Converges by Theorem 9.10

33.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/5}}$$

Divergent *p*-series with $p = \frac{1}{5} < 1$

34.
$$\sum_{n=1}^{\infty} \frac{3}{n^{5/3}}$$

Convergent *p*-series with $p = \frac{5}{3} > 1$

35.
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

Convergent *p*-series with $p = \frac{3}{2} > 1$

n	5	10	20	50	100
S"	3.7488	3.75	3.75	3.75	3.75

The partial sums approach the sum 3.75 very rapidly.

(b)									
(-)	n	5	10	20	50	100			
	S _n	1.4636	1.5498	1.5962	1.6251	1.635			

The partial sums approach the sum $\pi^2/6 \approx 1.6449$ slower than the series in part (a).

40.
$$\sum_{n=1}^{N} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N} > M$$

(b) No. Because the terms are decreasing (approaching zero), more and more terms are required to increase the partial sum by 2.

36.
$$\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$$

Divergent *p*-series with $p = \frac{2}{3} < 1$

37.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1.04}}$$

Convergent p-series with p = 1.04 > 1

38.
$$\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$$

Convergent p-series with $p = \pi > 1$

41. Let f be positive, continuous, and decreasing for $x \ge 1$ and $a_n = f(n)$. Then,

$$\sum_{n=1}^{\infty} a_n \text{ and } \int_{1}^{\infty} f(x) dx$$

either both converge or both diverge (Theorem 9.10) See Example 1, page 620.

42. A series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is a *p*-series, p > 0.

The p-series converges if p > 1 and diverges if 0 .

43. Your friend is not correct. The series

$$\sum_{n=10,000}^{\infty} \frac{1}{n} = \frac{1}{10,000} + \frac{1}{10,001} + \cdots$$

is the harmonic series, starting with the 10,000th term, and therefore diverges.

44.
$$\sum_{n=1}^{6} a_n \ge \int_{1}^{7} f(x) dx \ge \sum_{n=2}^{7} a_n$$

45. (a)

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} > \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

The area under the rectangle is greater than the area under the curve.

Because
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{\infty} = \infty$$
, diverges,

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges.

(b)

$$\sum_{n=2}^{\infty} \frac{1}{n^2} < \int_1^{\infty} \frac{1}{x^2} dx$$

The area under the rectangles is less than the area under the curve.

Because
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{\infty} = 1$$
, converges,

$$\sum_{n=2}^{\infty} \frac{1}{n^2} \text{ converges} \left(\text{and so does } \sum_{n=1}^{\infty} \frac{1}{n^2} \right).$$

46. Answers will vary. *Sample answer*: The graph of the partial sums of the first series seems to be increasing without bound; therefore, the series diverges. The graph of the partial sums of the second series seems to be approaching a limit; therefore the series converges.

47.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

If p = 1, then the series diverges by the Integral Test. If $p \neq 1$,

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} dx = \int_{2}^{\infty} (\ln x)^{-p} \frac{1}{x} dx = \left[\frac{(\ln x)^{-p+1}}{-p+1} \right]_{2}^{\infty}.$$

Converges for -p + 1 < 0 or p > 1

48.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^p}$$

If p = 1, then the series diverges by the Integral Test. If $p \neq 1$,

$$\int_{2}^{\infty} \frac{\ln x}{x^{p}} dx = \int_{2}^{\infty} x^{-p} \ln x \, dx = \left[\frac{x^{-p+1}}{\left(-p+1\right)^{2}} \left[-1 + \left(-p+1\right) \ln x \right] \right]_{2}^{\infty}.$$
 (Use integration by parts.)

Converges for -p + 1 < 0 or p > 1

49.
$$\sum_{n=1}^{\infty} \frac{n}{(1+n^2)^p}$$

If p = 1, $\sum_{n=1}^{\infty} \frac{n}{1 + n^2}$ diverges (see Example 1). Let

$$f(x) = \frac{x}{\left(1 + x^2\right)^p}, p \neq 1$$

$$f'(x) = \frac{1 - (2p - 1)x^2}{\left(1 + x^2\right)^{p+1}}.$$

For a fixed p > 0, $p \ne 1$, f'(x) is eventually negative. f is positive, continuous, and eventually decreasing.

$$\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{p}} dx = \left[\frac{1}{\left(x^{2}+1\right)^{p-1} \left(2-2p\right)}\right]_{1}^{\infty}$$

For p > 1, this integral converges. For 0 , it diverges.

50.
$$\sum_{n=1}^{\infty} n(1 + n^2)^p$$

Because p > 0, the series diverges for all values of p.

51.
$$\sum_{n=1}^{\infty} \left(\frac{3}{p}\right)^n$$
, Geometric series.

Converges for $\left| \frac{3}{p} \right| < 1 \Rightarrow |p| > 3 \Rightarrow p > 3$

52.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n \left[\ln(\ln n) \right]^p}$$

If
$$p = 1$$
, then

$$\int_{3}^{\infty} \frac{1}{x \ln x \left[\ln(\ln x) \right]} dx = \left[\ln(\ln(\ln x)) \right]_{3}^{\infty} = \infty, \text{ so the}$$

series diverges by the Integral Test.

If
$$p \neq 1$$
,

$$\int_3^\infty \frac{1}{x \ln x \left[\ln(\ln x)\right]^p} dx = \left[\frac{\left[\ln(\ln x)\right]^{-p+1}}{-p+1}\right]_3^\infty.$$

This converges for $-p + 1 < 0 \Rightarrow p > 1$.

So, the series converges for p > 1, and diverges for 0 .

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + \cdots + a_N$$

$$R_N = S - S_N = \sum_{n=N+1}^{\infty} a_n > 0$$

$$R_N = S - S_N = \sum_{n=N+1}^{\infty} a_n = a_{N+1} + a_{N+2} + \cdots$$

$$\leq \int_{-\infty}^{\infty} f(x) dx$$

So,
$$0 \le R_n \le \int_N^\infty f(x) dx$$

54. From Exercise 53, you have:

$$0 \le S - S_N \le \int_N^\infty f(x) \, dx$$

$$S_N \leq S \leq S_N + \int_{-\infty}^{\infty} f(x) \, dx$$

$$\sum_{n=1}^{N} a_n \leq S \leq \sum_{n=1}^{N} a_n + \int_{N}^{\infty} f(x) dx$$

55.
$$S_5 = 1 + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{5^2} \approx 1.4636$$

$$0 \le R_5 \le \int_5^\infty \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_5^\infty = \frac{1}{5} = 0.2$$

$$1.4636 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 1.4636 + 0.2 = 1.6636$$

56.
$$S_6 = 1 + \frac{1}{2^5} + \dots + \frac{1}{6^5} \approx 1.0368$$

$$0 \le R_6 \le \int_6^\infty \frac{1}{x^5} dx = \left[-\frac{1}{4x^4} \right]_0^\infty \approx 0.0002$$

$$1.0368 \le \sum_{n=1}^{\infty} \frac{1}{n^5} \le 1.0368 + 0.0002 = 1.0370$$

57.
$$S_{10} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \frac{1}{26} + \frac{1}{37} + \frac{1}{50} + \frac{1}{65} + \frac{1}{82} + \frac{1}{101} \approx 0.9818$$

 $0 \le R_{10} \le \int_{10}^{\infty} \frac{1}{x^2 + 1} dx = \left[\arctan x\right]_{10}^{\infty} = \frac{\pi}{2} - \arctan 10 \approx 0.0997$
 $0.9818 \le \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \le 0.9818 + 0.0997 = 1.0815$

58.
$$S_{10} = \frac{1}{2(\ln 2)^3} + \frac{1}{3(\ln 3)^3} + \frac{1}{4(\ln 4)^3} + \dots + \frac{1}{11(\ln 11)^3} \approx 1.9821$$

$$0 \le R_{10} \le \int_{10}^{\infty} \frac{1}{(x+1)[\ln(x+1)]^3} dx = \left[-\frac{1}{2[\ln(x+1)]^2} \right]_{10}^{\infty} = \frac{1}{2(\ln 11)^3} \approx 0.0870$$

$$1.9821 \le \sum_{n=1}^{\infty} \frac{1}{(n+1)[\ln(n+1)]^3} \le 1.9821 + 0.0870 = 2.0691$$

59.
$$S_4 = \frac{1}{e} + \frac{2}{e^4} + \frac{3}{e^9} + \frac{4}{e^{16}} \approx 0.4049$$

 $0 \le R_4 \le \int_4^\infty x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} \right]_4^\infty = \frac{e^{-16}}{2} \approx 5.6 \times 10^{-8}$
 $0.4049 \le \sum_{n=1}^\infty n e^{-n^2} \le 0.4049 + 5.6 \times 10^{-8}$

60.
$$S_4 = \frac{1}{e} + \frac{1}{e^2} + \frac{1}{e^3} + \frac{1}{e^4} \approx 0.5713$$

 $0 \le R_4 \le \int_4^\infty e^{-x} dx = \left[-e^{-x} \right]_4^\infty \approx 0.0183$
 $0.5713 \le \sum_{n=0}^\infty e^{-n} \le 0.5713 + 0.0183 = 0.5896$

61.
$$0 \le R_N \le \int_N^\infty \frac{1}{x^4} dx = \left[-\frac{1}{3x^3} \right]_N^\infty = \frac{1}{3N^3} < 0.001$$

$$\frac{1}{N^3} < 0.003$$

$$N^3 > 333.33$$

$$N > 6.93$$

$$N \ge 7$$

62.
$$0 \le R_N \le \int_N^\infty \frac{1}{x^{3/2}} dx = \left[-\frac{2}{x^{1/2}} \right]_N^\infty = \frac{2}{\sqrt{N}} < 0.001$$

$$N^{-1/2} < 0.0005$$

$$\sqrt{N} > 2000$$

$$N \ge 4,000,000$$

63.
$$R_N \le \int_N^\infty e^{-x/2} dx = \left[-2e^{-x/2} \right]_N^\infty = \frac{2}{e^{N/2}} < 0.001$$

$$\frac{2}{e^{N/2}} < 0.001$$

$$e^{N/2} > 2000$$

$$\frac{N}{2} > \ln 2000$$

$$N > 2 \ln 2000 \approx 15.2$$

$$N \ge 16$$

64.
$$R_N \le \int_N^\infty \frac{1}{x^2 + 1} dx = \left[\arctan x\right]_N^\infty$$

 $= \frac{\pi}{2} - \arctan N < 0.001$
 $-\arctan N < 0.001 - \frac{\pi}{2}$
 $\arctan N > \frac{\pi}{2} - 0.001$
 $N > \tan\left(\frac{\pi}{2} - 0.001\right)$

65. (a)
$$\sum_{n=2}^{\infty} \frac{1}{n! \cdot 1}$$
. This is a convergent *p*-series with $p = 1.1 > 1$. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is a divergent series. Use the Integral Test. $f(x) = \frac{1}{x \ln x}$ is positive, continuous, and decreasing for $x \ge 2$.
$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \left[\ln \left| \ln x \right| \right]_{2}^{\infty} = \infty$$

(b)
$$\sum_{n=2}^{6} \frac{1}{n^{1.1}} = \frac{1}{2^{1.1}} + \frac{1}{3^{1.1}} + \frac{1}{4^{1.1}} + \frac{1}{5^{1.1}} + \frac{1}{6^{1.1}} \approx 0.4665 + 0.2987 + 0.2176 + 0.1703 + 0.1393$$
$$\sum_{n=2}^{6} \frac{1}{n \ln n} = \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \frac{1}{5 \ln 5} + \frac{1}{6 \ln 6} \approx 0.7213 + 0.3034 + 0.1803 + 0.1243 + 0.0930$$

For $n \ge 4$, the terms of the convergent series seem to be larger than those of the divergent series.

(c)
$$\frac{1}{n^{1.1}} < \frac{1}{n \ln n}$$

 $n \ln n < n^{1.1}$

 $\ln n < n^{0.1}$

This inequality holds when $n \ge 3.5 \times 10^{15}$. Or, $n > e^{40}$. Then $\ln e^{40} = 40 < (e^{40})^{0.1} = e^4 \approx 55$.

66. (a)
$$\int_{10}^{\infty} \frac{1}{x^p} dx = \left[\frac{x^{-p+1}}{-p+1} \right]_{10}^{\infty} = \frac{1}{(p-1)!0^{p-1}}, p > 1$$

(b)
$$f(x) = \frac{1}{x^p}$$

$$R_{10}(p) = \sum_{n=11}^{\infty} \frac{1}{n^p}$$

 \leq Area under the graph of f over the interval [10, ∞)

- (c) The horizontal asymptote is y = 0. As n increases, the error decreases.
- 67. (a) Let f(x) = 1/x. f is positive, continuous, and decreasing on $[1, \infty)$.

$$S_n - 1 \le \int_{1}^n \frac{1}{x} \, dx$$

$$S_n - 1 \le \ln n$$

So,
$$S_n \le 1 + \ln n$$
. Similarly,

$$S_n \ge \int_1^{n+1} \frac{1}{x} dx = \ln(n+1).$$

So,
$$\ln(n+1) \le S_n \le 1 + \ln n$$
.

(b) Because $\ln(n+1) \le S_n \le 1 + \ln n$, you have $\ln(n+1) - \ln n \le S_n - \ln n \le 1$. Also, because $\ln x$ is an increasing function, $\ln(n+1) - \ln n > 0$ for $n \ge 1$. So, $0 \le S_n - \ln n \le 1$ and the sequence $\{a_n\}$ is bounded.

(c)
$$a_n - a_{n+1} = [S_n - \ln n] - [S_{n+1} - \ln(n+1)] = \int_n^{n+1} \frac{1}{x} dx - \frac{1}{n+1} \ge 0$$

So, $a_n \ge a_{n+1}$ and the sequence is decreasing.

- (d) Because the sequence is bounded and monotonic, it converges to a limit, γ .
- (e) $a_{100} = S_{100} \ln 100 \approx 0.5822$ (Actually $\gamma \approx 0.577216$.)

$$68. \sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right) = \sum_{n=2}^{\infty} \ln\left(\frac{n^2 - 1}{n^2}\right) = \sum_{n=2}^{\infty} \ln\left(\frac{(n+1)(n-1)}{n^2}\right) = \sum_{n=2}^{\infty} \left[\ln(n+1) + \ln(n-1) - 2\ln n\right]$$

$$= \left(\ln 3 + \ln 1 - 2\ln 2\right) + \left(\ln 4 + \ln 2 - 2\ln 3\right) + \left(\ln 5 + \ln 3 - 2\ln 4\right) + \left(\ln 6 + \ln 4 - 2\ln 5\right)$$

$$+ \left(\ln 7 + \ln 5 - 2\ln 6\right) + \left(\ln 8 + \ln 6 - 2\ln 7\right) + \left(\ln 9 + \ln 7 - 2\ln 8\right) + \dots = -\ln 2$$

$$69. \sum_{n=2}^{\infty} x^{\ln n}$$

(a)
$$x = 1$$
: $\sum_{n=2}^{\infty} 1^{\ln n} = \sum_{n=2}^{\infty} 1$, diverges

(b)
$$x = \frac{1}{e}$$
: $\sum_{n=2}^{\infty} \left(\frac{1}{e}\right)^{\ln n} = \sum_{n=2}^{\infty} e^{-\ln n} = \sum_{n=2}^{\infty} \frac{1}{n}$, diverges

(c) Let x be given,
$$x > 0$$
. Put $x = e^{-p} \iff \ln x = -p$.

$$\sum_{n=2}^{\infty} x^{\ln n} = \sum_{n=2}^{\infty} e^{-p \ln n} = \sum_{n=2}^{\infty} n^{-p} = \sum_{n=2}^{\infty} \frac{1}{n^p}$$

This series converges for $p > 1 \Rightarrow x < \frac{1}{e}$.

70.
$$\xi(x) = \sum_{n=1}^{\infty} n^{-x} = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

Converges for x > 1 by Theorem 9.11

71. Let
$$f(x) = \frac{1}{3x-2}$$
, $f'(x) = \frac{-3}{(3x-2)^2} < 0$ for $x \ge 1$

f is positive, continuous, and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{3x - 2} \, dx = \left[\frac{1}{3} \ln |3x - 2| \right]_{1}^{\infty} = \infty$$

So, the series $\sum_{n=1}^{\infty} \frac{1}{3n-2}$

diverges by Theorem 9.10.

72.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

Let
$$f(x) = \frac{1}{x\sqrt{x^2 - 1}}$$
.

f is positive, continuous, and decreasing for $x \ge 2$.

$$\int_{2}^{\infty} \frac{1}{x\sqrt{x^{2} - 1}} dx = \left[\operatorname{arcsec} x\right]_{2}^{\infty} = \frac{\pi}{2} - \frac{\pi}{3}$$

Converges by Theorem 9.10

73.
$$\sum_{n=1}^{\infty} \frac{1}{n^{4/n}} = \sum_{n=1}^{\infty} \frac{1}{n^{5/4}}$$

p-series with $p = \frac{5}{4}$

Converges by Theorem 9.11

74.
$$3\sum_{n=1}^{\infty} \frac{1}{n^{0.95}}$$

p-series with p = 0.95

Diverges by Theorem 9.11

75.
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$

Geometric series with $r = \frac{2}{3}$

Converges by Theorem 9.6

76. $\sum_{n=0}^{\infty} (1.042)^n$ is geometric with r = 1.042 > 1. Diverges by Theorem 9.6.

77.
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$$

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + (1/n^2)}} = 1 \neq 0$$

Diverges by Theorem 9.9

78.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{n^3} \right) = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{n^3}$$

Because these are both convergent *p*-series, the difference is convergent.

79.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \neq 0$$

Fails nth-Term Test

Diverges by Theorem 9.9