80.
$$\sum_{n=2}^{\infty} \ln(n)$$

$$\lim_{n\to\infty}\ln(n)=\infty$$

Diverges by Theorem 9.9

81.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

Let
$$f(x) = \frac{1}{x(\ln x)^3}$$
.

f is positive, continuous, and decreasing for $x \ge 2$.

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} dx = \int_{2}^{\infty} (\ln x)^{-3} \frac{1}{x} dx$$

$$= \left[\frac{(\ln x)^{-2}}{-2} \right]_{2}^{\infty}$$

$$= \left[-\frac{1}{2(\ln x)^{2}} \right]_{2}^{\infty} = \frac{1}{2(\ln 2)^{2}}$$

Converges by Theorem 9.10. See Exercise 47.

82.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^3}$$

Let
$$f(x) = \frac{\ln x}{x^3}$$
.

f is positive, continuous, and decreasing for $x \ge 2$ since

$$f'(x) = \frac{1-3 \ln x}{x^4} < 0 \text{ for } x \ge 2.$$

$$\int_{2}^{\infty} \frac{\ln x}{x^{3}} dx = \left[-\frac{\ln x}{2x^{2}} \right]_{2}^{\infty} + \frac{1}{2} \int_{2}^{\infty} \frac{1}{x^{3}} dx$$

$$= \frac{\ln 2}{8} + \left[-\frac{1}{4x^{2}} \right]_{2}^{\infty}$$

$$= \frac{\ln 2}{8} + \frac{1}{16} \text{ (Use integration by parts.)}$$

Converges by Theorem 9.10. See Exercise 34.

Section 9.4 Comparisons of Series

1. (a)
$$\sum_{n=1}^{\infty} \frac{6}{n^{3/2}} = \frac{6}{1} + \frac{6}{2^{3/2}} + \cdots; S_1 = 6$$

$$\sum_{n=1}^{\infty} \frac{6}{n^{3/2} + 3} = \frac{6}{4} + \frac{6}{2^{3/2} + 3} + \cdots; S_1 = \frac{3}{2}$$

$$\sum_{n=1}^{\infty} \frac{6}{n\sqrt{n^2 + 0.5}} = \frac{6}{1\sqrt{1.5}} + \frac{6}{2\sqrt{4.5}} + \cdots; S_1 = \frac{6}{\sqrt{1.5}} \approx 4.9$$

(b) The first series is a *p*-series. It converges $\left(p = \frac{3}{2} > 1\right)$.

- (c) The magnitude of the terms of the other two series are less than the corresponding terms at the convergent p-series. So, the other two series converge.
- (d) The smaller the magnitude of the terms, the smaller the magnitude of the terms of the sequence of partial sums.

2. (a)
$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}} = 2 + \frac{2}{\sqrt{2}} + \cdots S_1 = 2$$

$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n} - 0.5} = \frac{2}{0.5} + \frac{2}{\sqrt{2} - 0.5} + \cdots S_1 = 4$$

$$\sum_{n=1}^{\infty} \frac{4}{\sqrt{n+0.5}} = \frac{4}{\sqrt{1.5}} + \frac{4}{\sqrt{2.5}} + \cdots S_1 \approx 3.3$$

(b) The first series is a *p*-series. It diverges
$$\left(p = \frac{1}{2} < 1\right)$$
.

- (c) The magnitude of the terms of the other two series are greater than the corresponding terms of the divergent p-series. So, the other two series diverge.
- (d) The larger the magnitude of the terms, the larger the magnitude of the terms of the sequence of partial sums.

3.
$$\frac{1}{2n-1} > \frac{1}{2n} > 0$$
 for $n \ge 1$

Therefore

$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

diverges by comparison with the divergent p-series

$$\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}.$$

$$4. \ \frac{1}{3n^2+2}<\frac{1}{3n^2}$$

Therefore.

$$\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2}$$

converges by comparison with the convergent p-series

$$\frac{1}{3}\sum_{n=1}^{\infty}\frac{1}{n^2}$$

5.
$$\frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n}}$$
 for $n \ge 2$

Therefore.

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$

diverges by comparison with the divergent p-series

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}.$$

6.
$$\frac{4^n}{5^n+3}<\left(\frac{4}{5}\right)^n$$

Therefore,

$$\sum_{n=0}^{\infty} \frac{4^n}{5^n + 3}$$

converges by comparison with the convergent geometric series

$$\sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^n.$$

7. For
$$n \ge 3$$
, $\frac{\ln n}{n+1} > \frac{1}{n+1} > 0$.

Therefore,

$$\sum_{n=1}^{\infty} \frac{\ln n}{n+1}$$

diverges by comparison with the divergent series

$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$

Note: $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges by the Integral Test.

8.
$$\frac{1}{\sqrt{n^3+1}} < \frac{1}{n^{3/2}}$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$$

converges by comparison with the convergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}.$$

9. For
$$n > 3$$
, $\frac{1}{n^2} > \frac{1}{n!} > 0$.

Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

converges by comparison with the convergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

10.
$$\frac{1}{4\sqrt[3]{n}-1} > \frac{1}{4\sqrt[4]{n}}$$

Therefore.

$$\sum_{n=1}^{\infty} \frac{1}{4\sqrt[3]{n}-1}$$

diverges by comparison with the divergent p-series

$$\frac{1}{4}\sum_{n=1}^{\infty}\frac{1}{\sqrt[4]{n}}.$$

11.
$$0 < \frac{1}{e^{n^2}} \le \frac{1}{e^n}$$

Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{e^{n^2}}$$

converges by comparison with the convergent geometric series

$$\sum_{n=0}^{\infty} \left(\frac{1}{e}\right)^n.$$

12.
$$\frac{3^n}{2^n-1} > \left(\frac{3}{2}\right)^n$$
 for $n \ge 1$

Therefore

$$\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$$

diverges by comparison with the divergent geometric series

$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n.$$

13.
$$\lim_{n\to\infty} \frac{n/(n^2+1)}{1/n} = \lim_{n\to\infty} \frac{n^2}{n^2+1} = 1$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

diverges by a limit comparison with the divergent *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

14.
$$\lim_{n\to\infty} \frac{5/(4^n+1)}{1/4^n} = \lim_{n\to\infty} \frac{5\cdot 4^n}{4^n+1} = 5$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{5}{4^n + 1}$$

converges by a limit comparison with the convergent geometric series

$$\sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n.$$

15.
$$\lim_{n \to \infty} \frac{1/\sqrt{n^2 + 1}}{1/n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1$$

Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

diverges by a limit comparison with the divergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

16.
$$\lim_{n\to\infty}\frac{(2^n+1)/(5^n+1)}{(2/5)^n}=\lim_{n\to\infty}\frac{2^n+1}{5^n+1}\cdot\frac{5^n}{2^n}=1$$

Therefore.

$$\sum_{n=1}^{\infty} \frac{2^n + 1}{5^n + 1}$$

converges by a limit comparison with the convergent geometric series

$$\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n.$$

17.
$$\lim_{n \to \infty} \frac{\frac{2n^2 - 1}{3n^5 + 2n + 1}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{2n^5 - n^3}{3n^5 + 2n + 1} = \frac{2}{3}$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{3n^5 + 2n + 1}$$

converges by a limit comparison with the convergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^3}.$$

18.
$$\lim_{n\to\infty} \frac{1/n^2(n+3)}{1/n^3} = \lim_{n\to\infty} \frac{n^3}{n^2(n+3)} = 1$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n^2(n+3)}$$

converges by a limit comparison with the convergent *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^3}.$$

19.
$$\lim_{n \to \infty} \frac{1/(n\sqrt{n^2 + 1})}{1/n^2} = \lim_{n \to \infty} \frac{n^2}{n\sqrt{n^2 + 1}} = 1$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$$

converges by a limit comparison with the convergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

20.
$$\lim_{n\to\infty}\frac{n/[(n+1)2^{n-1}]}{1/(2^{n-1})}=\lim_{n\to\infty}\frac{n}{n+1}=1$$

Therefore.

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)2^{n-1}}$$

converges by a limit comparison with the convergent geometric series

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1}.$$

21.
$$\lim_{n\to\infty} \frac{(n^{k-1})/(n^k+1)}{1/n} = \lim_{n\to\infty} \frac{n^k}{n^k+1} = 1$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^k + 1}$$

diverges by a limit comparison with the divergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

22.
$$\lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = \lim_{n \to \infty} \frac{\left(-1/n^2\right)\cos(1/n)}{-1/n^2} = \lim_{n \to \infty} \cos\left(\frac{1}{n}\right) = 1$$

Therefore,

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

diverges by a limit comparison with the divergent p-series

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

23.
$$\sum_{n=1}^{\infty} \frac{\sqrt[1/3]{n}}{n} = \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$$

Diverges

p-series with $p = \frac{2}{3}$

24.
$$\sum_{n=0}^{\infty} 5\left(-\frac{4}{3}\right)^n$$

Diverges;

Geometric series with $|r| = \left| -\frac{4}{3} \right| = \frac{4}{3} > 1$

25.
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 1}$$

Converges:

Direct comparison with convergent geometric series

$$\sum_{i=1}^{\infty} \left(\frac{1}{5}\right)^{i}$$

26.
$$\sum_{n=3}^{\infty} \frac{1}{n^3 - 8}$$

Converges; limit comparison with $\sum_{n=3}^{\infty} \frac{1}{n^3}$

27.
$$\sum_{n=1}^{\infty} \frac{2n}{3n-2}$$

Diverges; nth-Term Test

$$\lim_{n\to\infty}\frac{2n}{3n-2}=\frac{2}{3}\neq 0$$

28.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \dots = \frac{1}{2}$$

Converges; telescoping series

29.
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$$

Converges; Integral Test

30.
$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$$

Converges; telescoping series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+3} \right)$$

31.
$$\lim_{n\to\infty} \frac{a_n}{1/n} = \lim_{n\to\infty} na_n$$
. By given conditions $\lim_{n\to\infty} na_n$ is finite and nonzero. Therefore,

$$\sum_{n=1}^{\infty} a_n$$

diverges by a limit comparison with the p-series

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

32. If
$$j < k - 1$$
, then $k - j > 1$. The *p*-series with $p = k - j$ converges and because

$$\lim_{n \to \infty} \frac{P(n)/Q(n)}{1/n^{k-j}} = L > 0, \text{ the series } \sum_{n=1}^{\infty} \frac{P(n)}{Q(n)}$$

converges by the Limit Comparison Test. Similarly, if $j \ge k - 1$, then $k - j \le 1$ which implies that

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)}$$

diverges by the Limit Comparison Test.

33.
$$\frac{1}{2} + \frac{2}{5} + \frac{3}{10} + \frac{4}{17} + \frac{5}{26} + \dots = \sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

which diverges because the degree of the numerator is only one less than the degree of the denominator.

34.
$$\frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \frac{1}{35} + \dots = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

which converges because the degree of the numerator is two less than the degree of the denominator.

35.
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$$

converges because the degree of the numerator is three less than the degree of the denominator.

36.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$$

diverges because the degree of the numerator is only one less than the degree of the denominator.

37.
$$\lim_{n \to \infty} n \left(\frac{n^3}{5n^4 + 3} \right) = \lim_{n \to \infty} \frac{n^4}{5n^4 + 3} = \frac{1}{5} \neq 0$$

Therefore, $\sum_{n=1}^{\infty} \frac{n^3}{5n^4 + 3}$ diverges.

38.
$$\lim_{n \to \infty} \frac{n}{\ln n} = \lim_{n \to \infty} \frac{1}{1/n} = \lim_{n \to \infty} n = \infty \neq 0$$

Therefore, $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges.

39.
$$\frac{1}{200} + \frac{1}{400} + \frac{1}{600} + \dots = \sum_{n=1}^{\infty} \frac{1}{200n}$$

diverges, (harmonic)

40.
$$\frac{1}{200} + \frac{1}{210} + \frac{1}{220} + \dots = \sum_{n=0}^{\infty} \frac{1}{200 + 10n}$$

diverges

41.
$$\frac{1}{201} + \frac{1}{204} + \frac{1}{209} + \frac{1}{216} = \sum_{n=1}^{\infty} \frac{1}{200 + n^2}$$

converges

42.
$$\frac{1}{201} + \frac{1}{208} + \frac{1}{227} + \frac{1}{264} + \dots = \sum_{n=1}^{\infty} \frac{1}{200 + n^3}$$

converges

43. Some series diverge or converge very slowly. You cannot decide convergence or divergence of a series by comparing the first few terms.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \text{ converges because } \frac{1}{n^2 + 1} < \frac{1}{n^2} \text{ and }$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges } (p\text{-series}).$$

45. See Theorem 9.13, page 614. One example is

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}} \text{ diverges because } \lim_{n \to \infty} \frac{1/\sqrt{n-1}}{1/\sqrt{n}} = 1 \text{ and}$$

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \text{ diverges } (p\text{-series}).$$

46. This is not correct. The beginning terms do not affect the convergence or divergence of a series. In fact,

$$\frac{1}{1000} + \frac{1}{1001} + \dots = \sum_{n=1000}^{\infty} \frac{1}{n}$$
 diverges (harmonic)

and
$$1 + \frac{1}{4} + \frac{1}{9} + \cdots = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (p-series).

47. (a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 4n + 1}$$

converges because the degree of the numerator is two less than the degree of the denominator. (See Exercise 32.)

(b)	n	5	10	20	50	100	
	S_n	1.1839	1.2087	1.2212	1.2287	1.2312	

(c)
$$\sum_{n=3}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8} - S_2 \approx 0.1226$$

(d)
$$\sum_{n=10}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8} - S_9 \approx 0.0277$$

For $0 < a_n < 1, 0 < a_n^2 < a_n < 1$.

So, the lower terms are those of $\sum a_n^2$

- **49.** False. Let $a_n = \frac{1}{n^3}$ and $b_n = \frac{1}{n^2}$. $0 < a_n \le b_n$ and both $\sum_{n=1}^{\infty} \frac{1}{n^3}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.
- **50.** True
- 51. True
- **52.** False. Let $a_n = 1/n$, $b_n = 1/n$, $c_n = 1/n^2$. Then, $a_n \le b_n + c_n$, but $\sum_{n=1}^{\infty} c_n$ converges.
- 53. True

54. False. $\sum_{n=1}^{\infty} a_n$ could converge or diverge.

For example, let $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges.

$$0 < \frac{1}{n} < \frac{1}{\sqrt{n}}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, but

$$0 < \frac{1}{n^2} < \frac{1}{\sqrt{n}}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

- **55.** Because $\sum_{n=1}^{\infty} b_n$ converges, $\lim_{n \to \infty} b_n = 0$. There exists N such that $b_n < 1$ for n > N. So, $a_n b_n < a_n$ for n > N and $\sum_{n=1}^{\infty} a_n b_n$ converges by comparison to the convergent series $\sum_{i=1}^{\infty} a_i$.
- **56.** Because $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n a_n = \sum_{n=1}^{\infty} a_n^2$ converges by Exercise 55.
- 57. $\sum \frac{1}{n^2}$ and $\sum \frac{1}{n^3}$ both converge, and therefore, so does $\sum \left(\frac{1}{n^2}\right) \left(\frac{1}{n^3}\right) = \sum \frac{1}{n^5}.$

58. $\sum \frac{1}{n^2}$ converge, and therefore, so does

$$\sum \left(\frac{1}{n^2}\right)^2 = \sum \frac{1}{n^4}.$$

59. Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges.

From the definition of limit of a sequence, there exists M > 0 such that

$$\left|\frac{a_n}{b_n}-0\right|<1$$

whenever n > M. So, $a_n < b_n$ for n > M. From the Comparison Test, $\sum a_n$ converges.

60. Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges. From the definition of limit of a sequence, there exists M > 0 such that

$$\frac{a_n}{b_n} > 1$$

for n > M. So, $a_n > b_n$ for n > M. By the Comparison Test, $\sum a_n$ diverges.

61. (a) Let $\sum a_n = \sum \frac{1}{(n+1)^3}$, and $\sum b_n = \sum \frac{1}{n^2}$,

converges.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/[(n+1)^3]}{1/(n^2)} = \lim_{n \to \infty} \frac{n^2}{(n+1)^3} = 0$$

By Exercise 59, $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3}$ converges.

(b) Let $\sum a_n = \sum \frac{1}{\sqrt{n\pi^n}}$, and $\sum b_n = \sum \frac{1}{\pi^n}$, converges.

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{1/(\sqrt{n}\pi^n)}{1/(\pi^n)}=\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$

By Exercise 59, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n\pi^n}}$ converges.

62. (a) Let
$$\sum a_n = \sum \frac{\ln n}{n}$$
, and $\sum b_n = \sum \frac{1}{n}$, diverges
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(\ln n)/n}{1/n} = \lim_{n \to \infty} \ln n = \infty$$

By Exercise 60, $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverges.

(b) Let
$$\sum a_n = \sum \frac{1}{\ln n}$$
, and $\sum b_n = \sum \frac{1}{n}$, diverges

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n}{\ln n}=\infty$$

By Exercise 60, $\sum \frac{1}{\ln n}$ diverges.

63. Because $\lim_{n\to\infty} a_n = 0$, the terms of $\Sigma \sin(a_n)$ are positive for sufficiently large n. Because

$$\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=1 \text{ and } \sum a_n$$

converges, so does $\Sigma \sin(a_n)$

64.
$$\sum_{n=1}^{\infty} \frac{1}{1+2+\cdots+n} = \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]/2}$$
$$= \sum_{n=1}^{\infty} \frac{2}{n(n+1)}$$

Because $\Sigma 1/n^2$ converges, and

$$\lim_{n \to \infty} \frac{2/\left[n(n+1)\right]}{1/\left(n^2\right)} = \lim_{n \to \infty} \frac{2n^2}{n(n+1)} = 2,$$

$$\sum \frac{1}{1+2+\cdots+n} \text{ converges.}$$

65. First note that $f(x) = \ln x - x^{1/4} = 0$ when $x \approx 5503.66$. That is,

 $\ln n < n^{1/4} \text{ for } n > 5504$

which implies that

$$\frac{\ln n}{n^{3/2}} < \frac{1}{n^{5/4}} \text{ for } n > 5504.$$

Because $\sum_{n=1}^{\infty} \frac{1}{n^{5/4}}$ is a convergent *p*-series,

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$$

converges by direct comparison.