70. (a) No, the series does not satisfy $a_{n+1} \le a_n$:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = 1 - \frac{1}{8} + \frac{1}{\sqrt{3}} - \frac{1}{64} + \dots$$
 and
$$\frac{1}{8} < \frac{1}{\sqrt{3}}.$$

(b) No, the series diverges because $\sum \frac{1}{\sqrt{n}}$ diverges.

71.
$$\sum_{n=1}^{\infty} \frac{10}{n^{3/2}} = 10 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}},$$

convergent p-series

72.
$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 5}$$

converges by limit comparison to convergent p-series

$$\sum \frac{1}{n^2}$$

73. Diverges by nth-Term Test

$$\lim_{n\to\infty}a_n=\infty$$

82. $s = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \cdots$

$$S = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots$$

(i) $s_{4n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{4n-1} - \frac{1}{4n}$

$$\frac{1}{2}s_{2n} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \dots + \frac{1}{4n-2} - \frac{1}{4n}$$

Adding:
$$s_{4n} + \frac{1}{2}s_{2n} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots + \frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n} = s_{3n}$$

(ii) $\lim_{n \to \infty} s_n = s$ (In fact, $s = \ln 2$.)

$$s \neq 0$$
 because $s > \frac{1}{2}$.

$$S = \lim_{n \to \infty} S_{3n} = s_{4n} + \frac{1}{2} s_{2n} = s + \frac{1}{2} s = \frac{3}{2} s$$

So,
$$S \neq s$$
.

Section 9.6 The Ratio and Root Tests

1.
$$\frac{(n+1)!}{(n-2)!} = \frac{(n+1)(n)(n-1)(n-2)!}{(n-2)!} = (n+1)(n)(n-1)$$

2.
$$\frac{(2k-2)!}{(2k)!} = \frac{(2k-2)!}{(2k)(2k-1)(2k-2)!} = \frac{1}{(2k)(2k-1)}$$

- 74. Converges by limit comparison to convergent geometric series $\sum \frac{1}{2^n}$.
- 75. Convergent geometric series

$$\left(r = \frac{7}{8} < 1\right)$$

76. Diverges by nth-Term Test

$$\lim_{n\to\infty}a_n=\frac{3}{2}$$

- 77. Convergent geometric series $(r = 1/\sqrt{e})$ or Integral Test
- 78. Converges (conditionally) by Alternating Series Test
- 79. Converges (absolutely) by Alternating Series Test
- **80.** Diverges by comparison to Divergent Harmonic Series: $\frac{\ln n}{n} > \frac{1}{n} \text{ for } n \ge 3$
- **81.** The first term of the series is zero, not one. You cannot regroup series terms arbitrarily.

3. Use the Principle of Mathematical Induction. When k = 1, the formula is valid because $1 = \frac{(2(1))!}{2! \cdot 1!}$. Assume that

$$1\cdot 3\cdot 5\cdots (2n-1)=\frac{(2n)!}{2^n n!}$$

and show that

$$1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1) = \frac{(2n+2)!}{2^{n+1}(n+1)!}$$

To do this, note that:

$$1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1) = \left[1 \cdot 3 \cdot 5 \cdots (2n-1)\right](2n+1)$$

$$= \frac{(2n)!}{2^n n!} \cdot (2n+1) \text{ (Induction hypothesis)}$$

$$= \frac{(2n)!(2n+1)}{2^n n!} \cdot \frac{(2n+2)}{2(n+1)}$$

$$= \frac{(2n)!(2n+1)(2n+2)}{2^{n+1} n!(n+1)}$$

$$= \frac{(2n+2)!}{2^{n+1} (n+1)!}$$

The formula is valid for all $n \ge 1$.

4. Use the Principle of Mathematical Induction. When k = 3, the formula is valid because $\frac{1}{1} = \frac{2^3 3!(3)(5)}{6!} = 1$. Assume that

$$\frac{1}{1\cdot 3\cdot 5\cdots (2n-5)}=\frac{2^n n!(2n-3)(2n-1)}{(2n)!}$$

and show that

$$\frac{1}{1\cdot 3\cdot 5\cdots (2n-5)(2n-3)}=\frac{2^{n+1}(n+1)!(2n-1)(2n+1)}{(2n+2)!}$$

To do this, note that

$$\frac{1}{1 \cdot 3 \cdot 5 \cdots (2n-5)(2n-3)} = \frac{1}{1 \cdot 3 \cdot 5 \cdots (2n-5)} \cdot \frac{1}{(2n-3)}$$

$$= \frac{2^{n} n! (2n-3)(2n-1)}{(2n)!} \cdot \frac{1}{(2n-3)}$$

$$= \frac{2^{n} n! (2n-1)}{(2n)!} \cdot \frac{(2n+1)(2n+2)}{(2n+1)(2n+2)}$$

$$= \frac{2^{n} (2)(n+1) n! (2n-1)(2n+1)}{(2n)! (2n+1)(2n+2)}$$

$$= \frac{2^{n+1} (n+1)! (2n-1)(2n+1)}{(2n+2)!}$$

The formula is valid for all $n \ge 3$.

5.
$$\sum_{n=1}^{\infty} n \left(\frac{3}{4} \right)^n = 1 \left(\frac{3}{4} \right) + 2 \left(\frac{9}{16} \right) + \cdots$$

$$S_1 = \frac{3}{4}, S_2 \approx 1.875$$

Matches (d).

6.
$$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n \left(\frac{1}{n!}\right) = \frac{3}{4} + \frac{9}{16} \left(\frac{1}{2}\right) + \cdots$$

$$S_1 = \frac{3}{4}, S_2 = 1.03$$

Matches (c).

7.
$$\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n!} = 9 - \frac{3^3}{2} + \cdots$$
$$S_1 = 9$$

Matches (f).

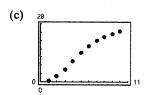
7.
$$\sum_{n=1}^{\infty} \frac{(-3)}{n!} = 9 - \frac{3}{2} + \cdots$$

 $S_1 = 9$

11. (a) Ratio Test:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^3 (1/2)^{n+1}}{n^3 (1/2)^n}$$

= $\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^3 \frac{1}{2} = \frac{1}{2} < 1$, converges

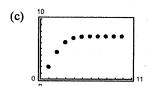
(b)	n	5	10	15	20	25
	S_n	13.7813	24.2363	25.8468	25.9897	25.9994



- (d) The sum is approximately 26.
- (e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of partial sums approaches the sum of the series.

12. (a) Ratio Test:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{(n+1)^2 + 1}{(n+1)!}}{\frac{n^2 + 1}{n!}} = \lim_{n \to \infty} \left(\frac{n^2 + 2n + 2}{n^2 + 1} \right) \left(\frac{1}{n+1} \right) = 0 < 1$$
, converges

(b)						
	n	5	10	15	20	25
	S_n	7.0917	7.1548	7.1548	7.1548	7.1548



- (d) The sum is approximately 7.15485
- (e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of the partial sums approaches the sum of the series.

Matches (b).

9.
$$\sum_{n=1}^{\infty} \left(\frac{4n}{5n-3} \right)^n = \frac{4}{2} + \left(\frac{8}{7} \right)^2 + \cdots$$
$$S_1 = 2, S_2 = 3.31$$

Matches (a).

10.
$$\sum_{n=0}^{\infty} 4e^{-n} = 4 + \frac{4}{e} + \cdots$$

 $S_1 = 4$

Matches (e).

^{© 2014} Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

13.
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1/5^{(n+1)}}{1/5^n} \right| = \lim_{n \to \infty} \frac{5^n}{5^{n+1}} = \frac{1}{5} < 1$$

Therefore, the series converges by the Ratio Test.

14.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1/(n+1)!}{1/n!}$$

$$= \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Therefore, the series converges by the Ratio Test.

15.
$$\sum_{n=0}^{\infty} \frac{n!}{3^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!} \right| = \lim_{n \to \infty} \frac{n+1}{3} = \infty$$

Therefore, by the Ratio Test, the series diverges.

16.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{(n+1)}/(n+1)!}{2^n/n!} \right|$$

$$= \lim_{n \to \infty} \frac{2}{n+1} = 0 < 1$$

Therefore, the series converges by the Ratio Test.

17.
$$\sum_{n=1}^{\infty} n \left(\frac{6}{5} \right)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)(6/5)^{n+1}}{n(6/5)^n}$$

$$= \lim_{n \to \infty} \frac{n+1}{n} \left(\frac{6}{5} \right) = \frac{6}{5} > 1$$

Therefore, the series diverges by the Ratio Test.

18.
$$\sum_{n=1}^{\infty} n \left(\frac{7}{8}\right)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(7/8)^{n+1}}{n(7/8)^n} \right|$$

$$= \lim_{n \to \infty} \frac{n+1}{n} \left(\frac{7}{8} \right) = \frac{7}{8} < 1$$

Therefore, the series converges by the Ratio Test.

19.
$$\sum_{n=1}^{\infty} \frac{n}{4^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)/4^{n+1}}{n/4^n} = \lim_{n \to \infty} \frac{n+1}{4n} = 1/4 < 1$$

Therefore, the series converges by the Ratio Test.

20.
$$\sum_{n=1}^{\infty} \frac{5^n}{n^4}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{5^{(n+1)}/(n+1)^4}{5^n/n^4} \right|$$

$$= \lim_{n \to \infty} 5\left(\frac{n+1}{n}\right)^4 = 5 > 1$$

Therefore, the series diverges by the Ratio Test.

21.
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^3 / 3^{(n+1)}}{n^3 / 3^n} \right|$$
$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^3 \frac{1}{3} = \frac{1}{3} < 1$$

Therefore, the series converges by the Ratio Test.

22.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}$$

$$a_{n+1} = \frac{n+3}{(n+1)(n+2)} \le \frac{n+2}{n(n+1)} = a_n$$

$$\lim_{n\to\infty}\frac{n+2}{n(n+1)}=0$$

Therefore, by Theorem 9.14, the series converges.

Note: The Ratio Test is inconclusive because

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1.$$

The series converges conditionally.

23.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right|$$
$$= \lim_{n \to \infty} \frac{2}{n+1} = 0$$

Therefore, by the Ratio Test, the series converges.

24.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} \left(3/2\right)^n}{n^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(3/2)^{n+1}}{n^2 + 2n + 1} \cdot \frac{n^2}{(3/2)^n} \right|$$

$$= \lim_{n \to \infty} \frac{3n^2}{2(n^2 + 2n + 1)} = \frac{3}{2} > 1$$

Therefore, by the Ratio Test, the series diverges.

25.
$$\sum_{n=1}^{\infty} \frac{n!}{n3^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{(n+1)3^{n+1}} \cdot \frac{n3^n}{n!} \right| = \lim_{n \to \infty} \frac{n}{3} = \infty$$

Therefore, by the Ratio Test, the series diverges.

26.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n^5}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(2n+2)!}{(n+1)^5} \cdot \frac{n^5}{(2n)!} \right|$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)n^5}{(n+1)^5} = \infty$$

Therefore, by the Ratio Test, the series diverges.

29.
$$\sum_{n=0}^{\infty} \frac{6^n}{(n+1)^n}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{6^{n+1}/(n+2)^{n+1}}{6^n/(n+1)^n} = \lim_{n\to\infty} \frac{6}{n+2} \left(\frac{n+1}{n+2} \right)^n = 0 \left(\frac{1}{e} \right) = 0.$$

To find
$$\lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^n$$
: Let $y = \left(\frac{n+1}{n+2} \right)^n$

$$\ln y = n \ln \left(\frac{n+1}{n+2} \right) = \frac{\ln(n+1) - \ln(n+2)}{1/n}$$

$$\lim_{n\to\infty} \left[\ln y \right] = \lim_{n\to\infty} \left[\frac{1/(n+1) - 1/(n+2)}{-1/n^2} \right] = \lim_{n\to\infty} \left[\frac{-n^2 \left[(n+2) - (n+1) \right]}{(n+1)(n+2)} \right] = -1$$

by L'Hôpital's Rule. So, $y \to \frac{1}{e}$.

Therefore, the series converges by the Ratio Test.

30.
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(3n)!}$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{\left[(n+1)!\right]^2}{(3n+3)!}\cdot\frac{(3n)!}{(n!)^2}\right| = \lim_{n\to\infty}\frac{(n+1)^2}{(3n+3)(3n+2)(3n+1)} = 0$$

Therefore, by the Ratio Test, the series converges.

27.
$$\sum_{n=0}^{\infty} \frac{e^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{e^{n+1}/(n+1)!}{e^n/n!}$$

$$= \lim_{n \to \infty} e\left(\frac{n!}{(n+1)!}\right) = \lim_{n \to \infty} \frac{e}{n+1} = 0$$

Therefore, the series converges by the Ratio Test.

28.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n}$$
$$= \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \frac{1}{e}$$

Therefore, the series converges by the Ratio Test.

31.
$$\sum_{n=0}^{\infty} \frac{5^n}{2^n + 1}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{5^{n+1}/(2^{n+1}+1)}{5^n/(2^n+1)} = \lim_{n\to\infty} \frac{5(2^n+1)}{(2^{n+1}+1)} = \lim_{n\to\infty} \frac{5(1+1/2^n)}{2+1/2^n} = \frac{5}{2} > 1$$

Therefore, the series diverges by the Ratio Test.

32.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n 2^{4n}}{(2n+1)!}$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{2^{4n+4}}{(2n+3)!}\cdot\frac{(2n+1)!}{2^{4n}}\right| = \lim_{n\to\infty}\frac{2^4}{(2n+3)(2n+2)} = 0$$

Therefore, by the Ratio Test, the series converges.

33.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} n!}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)!}{1\cdot 3\cdot 5\cdots (2n+1)(2n+3)} \cdot \frac{1\cdot 3\cdot 5\cdots (2n+1)}{n!} \right| = \lim_{n\to\infty} \frac{n+1}{2n+3} = \frac{1}{2}$$

Therefore, by the Ratio Test, the series converges.

Note: The first few terms of this series are $-1 + \frac{1}{1 \cdot 3} - \frac{2!}{1 \cdot 3 \cdot 5} + \frac{3!}{1 \cdot 3 \cdot 5 \cdot 7} - \cdots$

34.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2 \cdot 4 \cdot 6 \cdots 2n}{2 \cdot 5 \cdot 8 \cdots (3n-1)}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{2 \cdot 4 \cdots 2n(2n+2)}{2 \cdot 5 \cdots (3n-1)(3n+2)} \cdot \frac{2 \cdot 5 \cdots (3n-1)}{2 \cdot 4 \cdots 2n} \right| = \lim_{n\to\infty} \frac{2n+2}{3n+2} = \frac{2}{3}$$

Therefore, by the Ratio Test, the series converges.

Note: The first few terms of this series are $-\frac{2}{2} + \frac{2 \cdot 4}{2 \cdot 5} - \frac{2 \cdot 4 \cdot 6}{2 \cdot 5 \cdot 8} + \cdots$

35.
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left[\frac{1}{5^n} \right]^{1/n} = \frac{1}{5} < 1$$

Therefore, by the Root Test, the series converges.

36.
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left\lceil \frac{1}{n^n} \right\rceil^{1/n} = \lim_{n\to\infty} \frac{1}{n} = 0$$

Therefore, by the Root Test, the series converges.

37.
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{2n+1}\right)^n} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2}$$

Therefore, by the Root Test, the series converges.

$$38. \sum_{n=1}^{\infty} \left(\frac{2n}{n+1} \right)^n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{2n}{n+1}\right)^n} = \lim_{n\to\infty} \frac{2n}{n+1} = 2$$

Therefore, by the Root Test, the series diverges.

39.
$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{n+3} \right)^n$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{3n+2}{n+3}\right)^n}$$

$$= \lim_{n \to \infty} \frac{3n+2}{n+3} = 3 > 1$$

Therefore, the series diverges by the Root Test.

40.
$$\sum_{n=1}^{\infty} \left(\frac{n-2}{5n+1} \right)^n$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{n-2}{5n+1}\right|^n}$$

$$= \lim_{n \to \infty} \left|\frac{n-2}{5n+1}\right| = \frac{1}{5} < 1$$

Therefore, the series converges by the Root Test.

41.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{(\ln n)^n}$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{(-1)^n}{(\ln n)^n}} = \lim_{n\to\infty} \frac{1}{|\ln n|} = 0$$

Therefore, by the Root Test, the series converges.

42.
$$\sum_{n=1}^{\infty} \left(\frac{-3n}{2n+1} \right)^{3n}$$

$$\lim_{n \to \infty} \sqrt[n]{\left| a_n \right|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{-3n}{2n+1} \right)^{3n}}$$

$$= \lim_{n \to \infty} \left(\frac{3n}{2n+1} \right)^3 = \left(\frac{3}{2} \right)^3 = \frac{27}{8}$$

Therefore, by the Root Test, the series diverges.

43.
$$\sum_{n=1}^{\infty} (2\sqrt[n]{n} + 1)^n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{(2\sqrt[n]{n}+1)^n} = \lim_{n\to\infty} (2\sqrt[n]{n}+1)$$

To find $\lim_{n \to \infty} \sqrt[n]{n}$, let $y = \lim_{n \to \infty} \sqrt[n]{n}$. Then

$$\ln y = \lim_{n \to \infty} \left(\ln^n \sqrt{n} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \ln n = \lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 0.$$

So, $\ln v = 0$, so $v = e^0 = 1$ and

$$\lim \left(2\sqrt[n]{n} + 1\right) = 2(1) + 1 = 3.$$

Therefore, by the Root Test, the series diverges.

44.
$$\sum_{n=0}^{\infty} e^{-3n} = \sum_{n=0}^{\infty} \frac{1}{e^{3n}}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{e^{3n}}} = \lim_{n \to \infty} \left(\frac{1}{3^n}\right)^{1/n} = \frac{1}{3}$$

Therefore, the series converges by the Root Test.

45.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(\frac{n}{3^n}\right)^{1/n} = \lim_{n \to \infty} \frac{n^{1/n}}{3} = \frac{1}{3}$$

Therefore, the series converges by the Root Test. Note: You can use L'Hôpital's Rule to show $\lim_{n\to\infty}n^{1/n}=1$:

Let
$$y = n^{1/n}$$
, $\ln y = \frac{1}{n} \ln n = \frac{\ln n}{n}$

$$\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 0 \Rightarrow y \to 1$$

46.
$$\sum_{n=1}^{\infty} \left(\frac{n}{500} \right)^n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{500}\right)^n} = \lim_{n\to\infty} \left(\frac{n}{500}\right) = \infty$$

Therefore, by the Root Test, the series diverges.

47.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)^n$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{1}{n} - \frac{1}{n^2} \right)^n}$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n^2} \right) = 0 - 0 = 0 < 1$$

Therefore, by the Root Test, the series converges.

$$48. \sum_{n=1}^{\infty} \left(\frac{\ln n}{n} \right)^n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{\ln n}{n}\right)^n} = \lim_{n\to\infty} \frac{\ln n}{n} = 0 < 1$$

Therefore, by the Root Test, the series converges.

$$49. \sum_{n=2}^{\infty} \frac{n}{\left(\ln n\right)^n}$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{n}{(\ln n)^n}} = \lim_{n\to\infty} \frac{n^{1/n}}{\ln n} = 0$$

Therefore, by the Root Test, the series converges.

50.
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{(n^n)^2} = \sum_{n=1}^{\infty} \frac{(n!)^n}{(n^2)^n}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{(n!)}{(n^2)^n}} = \lim_{n \to \infty} \frac{n!}{n^2} = \infty$$

Therefore, by the Root Test, the series diverges.

51.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 5}{n}$$

$$a_{n+1} = \frac{5}{n+1} < \frac{5}{n} = a_n$$

$$\lim_{n \to \infty} \frac{5}{n} = 0$$

Therefore, by the Alternating Series Test, the series converges (conditional convergence).

52.
$$\sum_{n=1}^{\infty} \frac{100}{n} = 100 \sum_{n=1}^{\infty} \frac{1}{n}$$

This is the divergent harmonic series.

53.
$$\sum_{n=1}^{\infty} \frac{3}{n\sqrt{n}} = 3 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

This is a convergent p-series.

54.
$$\sum_{n=1}^{\infty} \left(\frac{2\pi}{3}\right)^n$$

Because $|r| = \frac{2\pi}{3} > 1$, this is a divergent Geometric Series.

55.
$$\sum_{n=1}^{\infty} \frac{5n}{2n-1}$$

$$\lim_{n\to\infty}\frac{5n}{2n-1}=\frac{5}{2}$$

Therefore, the series diverges by the nth-Term Test

56.
$$\sum_{n=1}^{\infty} \frac{n}{2n^2+1}$$

$$\lim_{n \to \infty} \frac{n/(2n^2 + 1)}{1/n} = \lim_{n \to \infty} \frac{n^2}{2n^2 + 1} = \frac{1}{2} > 0$$

This series diverges by limit comparison to the divergent harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

57.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n-2}}{2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n 3^n 3^{-2}}{2^n} = \sum_{n=1}^{\infty} \frac{1}{9} \left(-\frac{3}{2} \right)^n$$

Because $|r| = \frac{3}{2} > 1$, this is a divergent geometric series.

58.
$$\sum_{n=1}^{\infty} \frac{10}{3\sqrt{n^3}}$$

$$\lim_{n\to\infty}\frac{10/3n^{3/2}}{1/n^{3/2}}=\frac{10}{3}$$

Therefore, the series converges by a Limit Comparison Test with the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}.$$

59.
$$\sum_{n=1}^{\infty} \frac{10n+3}{n2^n}$$

$$\lim_{n \to \infty} \frac{(10n+3)/n2^n}{1/2^n} = \lim_{n \to \infty} \frac{10n+3}{n} = 10$$

Therefore, the series converges by a Limit Comparison. Test with the geometric series

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n.$$

$$60. \sum_{n=1}^{\infty} \frac{2^n}{4n^2-1}$$

$$\lim_{n \to \infty} \frac{2^n}{4n^2 - 1} = \lim_{n \to \infty} \frac{(\ln 2)2^n}{8n} = \lim_{n \to \infty} \frac{(\ln 2)^2 2^n}{8} = \infty$$

Therefore, the series diverges by the nth-Term Test.

$$61. \left| \frac{\cos n}{3''} \right| \leq \frac{1}{3''}$$

Therefore the series $\sum_{n=1}^{\infty} \left| \frac{\cos n}{3^n} \right|$ converges

by Direct comparison with the convergent geometric series $\sum_{n=0}^{\infty} \frac{1}{3^n}$. So, $\sum_{n=0}^{\infty} \frac{\cos n}{3^n}$ converges.

62.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

$$a_{n+1} = \frac{1}{(n+1)\ln(n+1)} \le \frac{1}{n\ln(n)} = a_n$$

$$\lim_{n\to\infty}\frac{1}{n\ln\left(n\right)}=0$$

Therefore, by the Alternating Series Test, the series converges.

63.
$$\sum_{n=1}^{\infty} \frac{n!}{n7^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!/(n+1)7^{n+1}}{n!/n7^n} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1)! \, n}{(n+1) \, n!} \, 7$$

$$= \lim_{n \to \infty} 7n = \infty$$

Therefore, the series diverges by the Ratio Test.

65.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n-1}}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^n}{(n+1)!} \cdot \frac{n!}{3^{n-1}} \right| = \lim_{n \to \infty} \frac{3}{n+1} = 0$$

Therefore, by the Ratio Test, the series converges. (Absolutely)

66.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n2^n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1}}{(n+1)2^{n+1}} \cdot \frac{n2^n}{3^n} \right| = \lim_{n \to \infty} \frac{3n}{2(n+1)} = \frac{3}{2}$$

Therefore, by the Ratio Test, the series diverges.

67.
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1}}{3 \cdot 5 \cdot 7 \cdots (2n+1)(2n+3)} \cdot \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{(-3)^n} \right| = \lim_{n\to\infty} \frac{3}{2n+3} = 0$$

Therefore, by the Ratio Test, the series converges.

68.
$$\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{18^n (2n-1) n!}$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{3\cdot 5\cdot 7\cdots (2n+1)(2n+3)}{18^{n+1}(2n+1)(2n-1)n!}\cdot \frac{18^n(2n-1)n!}{3\cdot 5\cdot 7\cdots (2n+1)}\right| = \lim_{n\to\infty}\frac{(2n+3)(2n-1)}{18(2n+1)(2n-1)} = \frac{1}{18}$$

Therefore, by the Ratio Test, the series converge.

69. (a) and (c) are the same

$$\sum_{n=1}^{\infty} \frac{n5^n}{n!} = \sum_{n=0}^{\infty} \frac{(n+1)5^{n+1}}{(n+1)!}$$

$$= 5 + \frac{(2)(5)^2}{2!} + \frac{(3)(5)^3}{3!} + \frac{(4)(5)^4}{4!} + \cdots$$

70. (b) and (c) are the same.

$$\sum_{n=0}^{\infty} (n+1) \left(\frac{3}{4}\right)^n = \sum_{n=1}^{\infty} n \left(\frac{3}{4}\right)^{n-1}$$
$$= 1 + 2 \left(\frac{3}{4}\right) + 3 \left(\frac{3}{4}\right)^2 + 4 \left(\frac{3}{4}\right)^3 + \cdots$$

$$64. \sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$$

$$\frac{\ln(n)}{n^2} \le \frac{1}{n^{3/2}}$$

Therefore, the series converges by comparison with the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}.$$

71. (a) and (b) are the same.

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!}$$
$$= 1 - \frac{1}{3!} + \frac{1}{5!} - \cdots$$

72. (a) and (b) are the same.

$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{\left(n-1\right)2^{n-1}} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n2^n}$$
$$= \frac{1}{2} - \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} - \cdots$$

73. Replace n with n + 1.

$$\sum_{n=1}^{\infty} \frac{n}{7^n} = \sum_{n=0}^{\infty} \frac{n+1}{7^{n+1}}$$

74. Replace n with n + 2.

$$\sum_{n=2}^{\infty} \frac{9^n}{(n-2)!} = \sum_{n=0}^{\infty} \frac{9^{n+2}}{n!}$$

75. (a) Because

$$\frac{3^{10}}{2^{10}10!} \approx 1.59 \times 10^{-5},$$
use 9 terms.

9 (2)^k

(b)
$$\sum_{k=1}^{9} \frac{(-3)^k}{2^k k!} \approx -0.7769$$

76. (a) Use 10 terms, k = 9, see Exercise 3

(b)
$$\sum_{k=0}^{\infty} \frac{\left(-3\right)^k}{1 \cdot 3 \cdot 5 \dots \left(2k+1\right)} = \sum_{k=0}^{\infty} \frac{\left(-3\right)^k 2^k k!}{\left(2k\right)! \left(2k+1\right)}$$
$$= \sum_{k=0}^{\infty} \frac{\left(-6\right)^k k!}{\left(2k+1\right)!} \approx 0.40967$$

77.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(4n-1)/(3n+2)a_n}{a_n} \right|$$
$$= \lim_{n \to \infty} \frac{4n-1}{3n+2} = \frac{4}{3} > 1$$

The series diverges by the Ratio Test

78.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(2n+1)/(5n-4)a_n}{a_n} \right|$$
$$= \lim_{n \to \infty} \frac{2n+1}{5n-4} = \frac{2}{5} < 1$$

The series converges by the Ratio Test.

79.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(\sin n + 1) / (\sqrt{n}) a_n}{a_n} \right|$$
$$= \lim_{n \to \infty} \frac{\sin n + 1}{\sqrt{n}} = 0 < 1$$

The series converges by the Ratio Test.

80.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(\cos n + 1)/(n)a_n}{a_n} \right|$$
$$= \lim_{n \to \infty} \frac{\cos n + 1}{n} = 0 < 1$$

The series converges by the Ratio Test.

81.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(1+(1)/(n))a_n}{a_n} \right| = \lim_{n \to \infty} (1+\frac{1}{n}) = 1$$

The Ratio Test is inconclusive.

But, $\lim_{n\to\infty} a_n \neq 0$, so the series diverges.

82. The series diverges because $\lim_{n\to\infty} a_n \neq 0$.

$$a_1 = \frac{1}{4}$$
 $a_2 = \left(\frac{1}{4}\right)^{1/2} = \frac{1}{2}$
 $a_3 = \left(\frac{1}{2}\right)^{1/3} \approx 0.7937$

In general, $a_{n+1} > a_n > 0$.

83.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1 \cdot 2 \cdots n(n+1)}{1 \cdot 3 \cdots (2n-1)(2n+1)}}{\frac{1 \cdot 2 \cdots n}{1 \cdot 3 \cdots (2n-1)}} \right|$$
$$= \lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{2} < 1$$

The series converges by the Ratio Test.

84.
$$\sum_{n=0}^{\infty} \frac{n+1}{3^n}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n+1}{3^n}} = \lim_{n \to \infty} \frac{\sqrt[n]{n+1}}{3}$$
Let
$$y = \lim_{n \to \infty} \sqrt[n]{n+1}$$

$$\ln y = \lim_{n \to \infty} (\ln \sqrt[n]{n+1})$$

$$= \lim_{n \to \infty} \frac{1}{n} \ln(n+1)$$

$$= \lim_{n \to \infty} \frac{\ln(n+1)}{n} = \frac{1}{n+1} = 0.$$

Because $\ln y = 0, y = e^{0} = 1, \text{ so}$

$$\lim_{n\to\infty}\frac{\sqrt{n+1}}{3}=\frac{1}{3}.$$

Therefore, by the Root Test, the series converges.

85.
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^n}$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{(\ln n)^n}} = \lim_{n\to\infty} \frac{1}{\ln n} = 0$$

Therefore, by the Root Test, the series converges.

86.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1)}{1 \cdot 2 \cdot 3 \cdots (2n-1)(2n)(2n+1)}}{\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{1 \cdot 2 \cdot 3 \cdots (2n-1)}} \right|$$
$$= \lim_{n \to \infty} \frac{2n+1}{(2n)(2n+1)} = 0 < 1$$

The series converges by the Ratio Test.

87.
$$\sum_{n=0}^{\infty} 2 \left(\frac{x}{3} \right)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2(x/3)^{n+1}}{2(x/3)^n} \right| = \lim_{n \to \infty} \left| \frac{x}{3} \right| = \left| \frac{x}{3} \right|$$

For the series to converge, $\left| \frac{x}{3} \right| < 1 \Rightarrow -3 < x < 3$.

For
$$x = 3$$
, $\sum_{n=0}^{\infty} 2(1)^n$ diverges.

For
$$x = -3$$
, $\sum_{n=0}^{\infty} 2(-1)^n$ diverges.

88.
$$\sum_{n=0}^{\infty} \left(\frac{x-3}{5}\right)^n$$
, Geometric series

For the series to converge,

$$\left| \frac{x-3}{5} \right| < 1 \implies |x-3| < 5$$
$$\implies -2 < x < 8.$$

For
$$x = 8$$
, $\sum_{n=0}^{\infty} 1^n$ diverges.

For
$$x = -2$$
, $\sum_{n=0}^{\infty} (-1)^n$ diverges.

(Note: You could also use the Ratio Test.)

89.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{n}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x+1)^{n+1}/(n+1)}{x^n/n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n}{n+1} (x+1) \right| = |x+1|$$

For the series to converge,

$$|x+1| < 1 \implies -1 < x+1 < 1$$

 $\implies -2 < x < 0.$

For
$$x = 0$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.

For
$$x = -2$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

90.
$$\sum_{n=0}^{\infty} 3(x-4)^n$$
, Geometric series

For the series to converge,

$$\left|x-4\right|<1 \implies -1 < x-4 < 1 \implies 3 < x < 5.$$

For
$$x = 1$$
, $\sum_{n=0}^{\infty} 3(-3)^n$ diverges.

For
$$x = -1$$
, $\sum_{n=0}^{\infty} 3(-5)^n$ diverges.

91.
$$\sum_{n=0}^{\infty} n! \left(\frac{x}{2}\right)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)! \left| \frac{x}{2} \right|^{n+1}}{n! \left| \frac{x}{2} \right|^n}$$
$$= \lim_{n \to \infty} (n+1) \left| \frac{x}{2} \right| = \infty$$

The series converges only at x = 0.

92.
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x+1|^{n+1}}{(n+1)!} / \frac{|x+1|^n}{n!} = \lim_{n \to \infty} \frac{|x+1|}{n+1} = 0$$

The series converges for all x.

- 93. See Theorem 9.17, page 627.
- 94. See Theorem 9.18, page 630.

95. No. Let
$$a_n = \frac{1}{n+10,000}$$
.

The series $\sum_{n=1}^{\infty} \frac{1}{n+10.000}$ diverges.

(Ratio Test)

(See Ratio Test)

(Ratio Test)

(Root Test)

(See Root Test) (Root Test, e > 1)

99. Assume that

 $\lim_{n\to\infty} |a_{n+1}/a_n| = L > 1 \text{ or that } \lim_{n\to\infty} |a_{n+1}/a_n| = \infty.$

Then there exists N > 0 such that $|a_{n+1}/a_n| > 1$ for all n > N. Therefore,

$$|a_{n+1}| > |a_n|, n > N \Rightarrow \lim_{n \to \infty} a_n \neq 0 \Rightarrow \sum a_n \text{ diverges.}$$

100. First, let

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = r < 1$$

and choose R such that $0 \le r < R < 1$. There must exist some N > 0 such that $\sqrt[n]{|a_n|} < R$ for all n > N. So, for $n > N |a_n| < R^n$ and because the geometric series

$$\sum_{n=0}^{\infty} R^n$$

converges, you can apply the Comparison Test to conclude that

$$\sum_{n=1}^{\infty} |a_n|$$

converges which in turn implies that $\sum_{n=0}^{\infty} a_n$ converges.

Second, let

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = r > R > 1.$$

Then there must exist some M > 0 such that $\sqrt[n]{|a_n|} > R$ for infinitely many n > M. So, for infinitely many n > M, you have $|a_n| > R^n > 1$ which implies that $\lim_{n\to\infty} a_n \neq 0$ which in turn implies that

$$\sum_{n=1}^{\infty} a_n$$
 diverges.

98. For
$$0 < a_n < 1$$
, $a_n < \sqrt{a_n}$.

Thus, the series $\sum_{n=0}^{\infty} a_n$ is the lower series, indicated by the round dots.

101.
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+1)^{3/2}} \cdot \frac{n^{3/2}}{1} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{3/2} = 1$$

102.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+1)^{1/2}} \cdot \frac{n^{1/2}}{1} \right|$$
$$= \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{1/2} = 1$$

103.
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{1}{\left(n+1\right)^4} \cdot \frac{n^4}{1}\right| = \lim_{n\to\infty}\left(\frac{n}{n+1}\right)^4 = 1$$

104.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{1}{\left(n+1\right)^p} \cdot \frac{n^p}{1}\right| = \lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p = 1$$

105.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
, p-series

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n^p}} = \lim_{n\to\infty} \frac{1}{n^{p/n}} = 1$$

So, the Root Test is inconclusive.

Note:
$$\lim_{n\to\infty} n^{p/n} = 1$$
 because if $y = n^{p/n}$, then

$$\ln y = \frac{p}{n} \ln n \text{ and } \frac{p}{n} \ln n \to 0 \text{ as } n \to \infty.$$

So
$$y \to 1$$
 as $n \to \infty$.

106. Ratio Test:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{n(\ln n)^p}{(n+1)(\ln(n+1))^p}=1, \text{ inconclusive.}$$

Root Test:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n(\ln n)^p}} = \lim_{n \to \infty} \frac{1}{n^{1/n}(\ln n)^{p/n}}$$

$$\lim_{n\to\infty} n^{1/n} = 1.$$
 Furthermore, let $y = (\ln n)^{p/n} \Rightarrow$

$$\ln y = \frac{p}{n} \ln(\ln n).$$

$$\lim_{n\to\infty} \ln y = \lim_{n\to\infty} \frac{p \ln(\ln n)}{n} = \lim_{n\to\infty} \frac{p}{\ln(n)(1/n)} = 0 \implies \lim_{n\to\infty} (\ln n)^{p/n} = 1.$$

So,
$$\lim_{n\to\infty} \frac{1}{n^{1/n}(\ln n)^{p/n}} = 1$$
, inconclusive.

107.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(xn)!}$$
, x positive integer

(a)
$$x = 1$$
: $\sum \frac{(n!)^2}{n!} = \sum n!$, diverges

(b)
$$x = 2$$
: $\sum \frac{(n!)^2}{(2n)!}$ converges by the Ratio Test:

$$\lim_{n\to\infty} \frac{\left[(n+1)! \right]^2}{(2n+2)!} / \frac{(n!)^2}{(2n)!} = \lim_{n\to\infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1$$

(c)
$$x = 3$$
: $\sum \frac{(n!)^2}{(3n)!}$ converges by the Ratio Test:

$$\lim_{n\to\infty} \frac{\left[(n+1)! \right]^2}{(3n+3)!} / \frac{(n!)^2}{(3n)!} = \lim_{n\to\infty} \frac{(n+1)^2}{(3n+3)(3n+2)(3n+1)} = 0 < 1$$

(d) Use the Ratio Test:

$$\lim_{n \to \infty} \frac{\left[(n+1)! \right]^2}{\left[x(n+1) \right]!} / \frac{(n!)^2}{(xn)!} = \lim_{n \to \infty} (n+1)^2 \frac{(xn)!}{(xn+x)!}$$

The cases x = 1, 2, 3 were solved above. For x > 3, the limit is 0. So, the series converges for all integers $x \ge 2$.

108. For
$$n = 1, 2, 3, \dots, -|a_n| \le a_n \le |a_n| \Rightarrow -\sum_{n=1}^k |a_n| \le \sum_{n=1}^k a_n \le \sum_{n=1}^k |a_n|.$$
Taking limits as $k \to \infty, -\sum_{n=1}^\infty |a_n| \le \sum_{n=1}^\infty |a_n| \le \sum_{n=1}^\infty |a_n| \le \sum_{n=1}^\infty |a_n|.$

109. First prove Abel's Summation Theorem:

If the partial sums of $\sum a_n$ are bounded and if $\{b_n\}$ decreases to zero, then $\sum a_n b_n$ converges.

Let
$$S_k = \sum_{i=1}^k a_i$$
. Let M be a bound for $\{|S_k|\}$.

$$a_1b_1 + a_2b_2 + \dots + a_nb_n = S_1b_1 + (S_2 - S_1)b_2 + \dots + (S_n - S_{n-1})b_n$$

$$= S_1(b_1 - b_2) + S_2(b_2 - b_3) + \dots + S_{n-1}(b_{n-1} - b_n) + S_nb_n$$

$$= \sum_{i=1}^{n-1} S_i(b_i - b_{i+1}) + S_nb_n$$

The series $\sum_{i=1}^{\infty} S_i(b_i - b_{i+1})$ is absolutely convergent because $|S_i(b_i - b_{i+1})| \le M(b_i - b_{i+1})$ and $\sum_{i=1}^{\infty} (b_i - b_{i+1})$ converges to b_1 .

Also,
$$\lim_{n\to\infty} S_n b_n = 0$$
 because $\{S_n\}$ bounded and $b_n \to 0$. Thus, $\sum_{n=1}^{\infty} a_n b_n = \lim_{n\to\infty} \sum_{i=1}^{n} a_i b_i$ converges.

Now let $b_n = \frac{1}{n}$ to finish the problem.

110. Using the Ratio Test,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left[\frac{n!}{(n+1)^n}\left(\frac{19}{7}\right)^n \bigg/\frac{(n-1)!}{n^{n-1}}\left(\frac{19}{7}\right)^{n-1}\right] = \lim_{n\to\infty}\left[\frac{n\cdot n^{n-1}}{(n+1)^n}\left(\frac{19}{7}\right)\right] = \lim_{n\to\infty}\left[\frac{1}{(1+(1/n))^n}\left(\frac{19}{7}\right)\right] = \frac{19}{7}\cdot\frac{1}{e} < 1$$

So, the series converges.

Section 9.7 Taylor Polynomials and Approximations

1.
$$y = -\frac{1}{2}x^2 + 1$$

Parabola

Matches (d)

2.
$$y = \frac{1}{8}x^4 - \frac{1}{2}x^2 + 1$$

y-axis symmetry

Three relative extrema

Matches (c)

3.
$$y = e^{-1/2}[(x + 1) + 1]$$

Linear

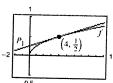
Matches (a)

4.
$$y = e^{-1/2} \left[\frac{1}{3} (x-1)^3 - (x-1) + 1 \right]$$

Cubic

Matches (b)

5.
$$f(x) = \frac{\sqrt{x}}{4}$$
, $C = 4$, $f(4) = \frac{1}{2}$
 $f'(x) = \frac{1}{8\sqrt{x}}$, $f'(4) = \frac{1}{16}$
 $P_1(x) = f(4) + f'(4)(x - 4)$
 $= \frac{1}{2} + \frac{1}{16}(x - 4)$
 $= \frac{1}{16}x + \frac{1}{4}$



 P_1 is the first-degree Taylor polynomial for f at 4.